Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniiunlem Unicode version

Theorem uniiunlem 3180
 Description: A subset relationship useful for converting union to indexed union using dfiun2 or dfiun2g and intersection to indexed intersection using dfiin2 . (Contributed by NM, 5-Oct-2006.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
Assertion
Ref Expression
uniiunlem
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   (,)

Proof of Theorem uniiunlem
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2144 . . . . . 6
21rexbidv 2436 . . . . 5
32cbvabv 2262 . . . 4
43sseq1i 3118 . . 3
5 r19.23v 2539 . . . . 5
65albii 1446 . . . 4
7 ralcom4 2703 . . . 4
8 abss 3161 . . . 4
96, 7, 83bitr4i 211 . . 3
104, 9bitr4i 186 . 2
11 nfv 1508 . . . . 5
12 eleq1 2200 . . . . 5
1311, 12ceqsalg 2709 . . . 4
1413ralimi 2493 . . 3
15 ralbi 2562 . . 3
1614, 15syl 14 . 2
1710, 16syl5rbb 192 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104  wal 1329   wceq 1331   wcel 1480  cab 2123  wral 2414  wrex 2415   wss 3066 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-in 3072  df-ss 3079 This theorem is referenced by:  iunopn  12158
 Copyright terms: Public domain W3C validator