ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralss GIF version

Theorem ralss 3258
Description: Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
ralss (𝐴𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 (𝑥𝐴𝜑)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ralss
StepHypRef Expression
1 ssel 3186 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21pm4.71rd 394 . . . 4 (𝐴𝐵 → (𝑥𝐴 ↔ (𝑥𝐵𝑥𝐴)))
32imbi1d 231 . . 3 (𝐴𝐵 → ((𝑥𝐴𝜑) ↔ ((𝑥𝐵𝑥𝐴) → 𝜑)))
4 impexp 263 . . 3 (((𝑥𝐵𝑥𝐴) → 𝜑) ↔ (𝑥𝐵 → (𝑥𝐴𝜑)))
53, 4bitrdi 196 . 2 (𝐴𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵 → (𝑥𝐴𝜑))))
65ralbidv2 2507 1 (𝐴𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 (𝑥𝐴𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2175  wral 2483  wss 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-ral 2488  df-in 3171  df-ss 3178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator