| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ralss | GIF version | ||
| Description: Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| ralss | ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssel 3177 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | pm4.71rd 394 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴))) | 
| 3 | 2 | imbi1d 231 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 → 𝜑) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑))) | 
| 4 | impexp 263 | . . 3 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑) ↔ (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝜑))) | |
| 5 | 3, 4 | bitrdi 196 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝜑)))) | 
| 6 | 5 | ralbidv2 2499 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |