| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrexv | Unicode version | ||
| Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
| Ref | Expression |
|---|---|
| ssrexv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3195 |
. . 3
| |
| 2 | 1 | anim1d 336 |
. 2
|
| 3 | 2 | reximdv2 2607 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-rex 2492 df-in 3180 df-ss 3187 |
| This theorem is referenced by: iunss1 3952 moriotass 5951 tfr1onlemssrecs 6448 tfrcllemssrecs 6461 fiss 7105 supelti 7130 ctssdclemn0 7238 ctssdc 7241 enumctlemm 7242 nninfwlpoimlemginf 7304 ficardon 7322 rerecapb 8951 lbzbi 9772 zsupcl 10411 infssuzex 10413 fiubm 11010 rexico 11647 alzdvds 12280 bitsfzolem 12380 gcddvds 12399 dvdslegcd 12400 pclemub 12725 subrgdvds 14112 ssrest 14769 plyss 15325 reeff1olem 15358 bj-charfunbi 15946 bj-nn0suc 16099 |
| Copyright terms: Public domain | W3C validator |