| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrexv | Unicode version | ||
| Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
| Ref | Expression |
|---|---|
| ssrexv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3187 |
. . 3
| |
| 2 | 1 | anim1d 336 |
. 2
|
| 3 | 2 | reximdv2 2605 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-rex 2490 df-in 3172 df-ss 3179 |
| This theorem is referenced by: iunss1 3938 moriotass 5928 tfr1onlemssrecs 6425 tfrcllemssrecs 6438 fiss 7079 supelti 7104 ctssdclemn0 7212 ctssdc 7215 enumctlemm 7216 nninfwlpoimlemginf 7278 ficardon 7296 rerecapb 8916 lbzbi 9737 zsupcl 10374 infssuzex 10376 fiubm 10973 rexico 11532 alzdvds 12165 bitsfzolem 12265 gcddvds 12284 dvdslegcd 12285 pclemub 12610 subrgdvds 13997 ssrest 14654 plyss 15210 reeff1olem 15243 bj-charfunbi 15747 bj-nn0suc 15900 |
| Copyright terms: Public domain | W3C validator |