| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrexv | Unicode version | ||
| Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
| Ref | Expression |
|---|---|
| ssrexv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3186 |
. . 3
| |
| 2 | 1 | anim1d 336 |
. 2
|
| 3 | 2 | reximdv2 2604 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-rex 2489 df-in 3171 df-ss 3178 |
| This theorem is referenced by: iunss1 3937 moriotass 5927 tfr1onlemssrecs 6424 tfrcllemssrecs 6437 fiss 7078 supelti 7103 ctssdclemn0 7211 ctssdc 7214 enumctlemm 7215 nninfwlpoimlemginf 7277 ficardon 7295 rerecapb 8915 lbzbi 9736 zsupcl 10372 infssuzex 10374 fiubm 10971 rexico 11503 alzdvds 12136 bitsfzolem 12236 gcddvds 12255 dvdslegcd 12256 pclemub 12581 subrgdvds 13968 ssrest 14625 plyss 15181 reeff1olem 15214 bj-charfunbi 15709 bj-nn0suc 15862 |
| Copyright terms: Public domain | W3C validator |