ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrexv Unicode version

Theorem ssrexv 3206
Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.)
Assertion
Ref Expression
ssrexv  |-  ( A 
C_  B  ->  ( E. x  e.  A  ph 
->  E. x  e.  B  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem ssrexv
StepHypRef Expression
1 ssel 3135 . . 3  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
21anim1d 334 . 2  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ph )  ->  (
x  e.  B  /\  ph ) ) )
32reximdv2 2564 1  |-  ( A 
C_  B  ->  ( E. x  e.  A  ph 
->  E. x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   E.wrex 2444    C_ wss 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-rex 2449  df-in 3121  df-ss 3128
This theorem is referenced by:  iunss1  3876  moriotass  5825  tfr1onlemssrecs  6303  tfrcllemssrecs  6316  fiss  6938  supelti  6963  ctssdclemn0  7071  ctssdc  7074  enumctlemm  7075  lbzbi  9550  fiubm  10737  rexico  11159  alzdvds  11788  zsupcl  11876  infssuzex  11878  gcddvds  11892  dvdslegcd  11893  pclemub  12215  ssrest  12782  reeff1olem  13292  bj-charfunbi  13653  bj-nn0suc  13806
  Copyright terms: Public domain W3C validator