Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssrexv | Unicode version |
Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
Ref | Expression |
---|---|
ssrexv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3122 | . . 3 | |
2 | 1 | anim1d 334 | . 2 |
3 | 2 | reximdv2 2556 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 wrex 2436 wss 3102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-rex 2441 df-in 3108 df-ss 3115 |
This theorem is referenced by: iunss1 3860 moriotass 5808 tfr1onlemssrecs 6286 tfrcllemssrecs 6299 fiss 6921 supelti 6946 ctssdclemn0 7054 ctssdc 7057 enumctlemm 7058 lbzbi 9525 rexico 11121 alzdvds 11745 zsupcl 11833 infssuzex 11835 gcddvds 11846 dvdslegcd 11847 ssrest 12582 reeff1olem 13092 bj-charfunbi 13386 bj-nn0suc 13539 |
Copyright terms: Public domain | W3C validator |