| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrexv | Unicode version | ||
| Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
| Ref | Expression |
|---|---|
| ssrexv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3218 |
. . 3
| |
| 2 | 1 | anim1d 336 |
. 2
|
| 3 | 2 | reximdv2 2629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-rex 2514 df-in 3203 df-ss 3210 |
| This theorem is referenced by: iunss1 3975 moriotass 5984 tfr1onlemssrecs 6483 tfrcllemssrecs 6496 fiss 7140 supelti 7165 ctssdclemn0 7273 ctssdc 7276 enumctlemm 7277 nninfwlpoimlemginf 7339 ficardon 7357 rerecapb 8986 lbzbi 9807 zsupcl 10446 infssuzex 10448 fiubm 11045 rexico 11727 alzdvds 12360 bitsfzolem 12460 gcddvds 12479 dvdslegcd 12480 pclemub 12805 subrgdvds 14193 ssrest 14850 plyss 15406 reeff1olem 15439 bj-charfunbi 16132 bj-nn0suc 16285 |
| Copyright terms: Public domain | W3C validator |