ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexss Unicode version

Theorem rexss 3291
Description: Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rexss  |-  ( A 
C_  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ( x  e.  A  /\  ph ) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem rexss
StepHypRef Expression
1 ssel 3218 . . . . 5  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
21pm4.71rd 394 . . . 4  |-  ( A 
C_  B  ->  (
x  e.  A  <->  ( x  e.  B  /\  x  e.  A ) ) )
32anbi1d 465 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ph )  <->  ( (
x  e.  B  /\  x  e.  A )  /\  ph ) ) )
4 anass 401 . . 3  |-  ( ( ( x  e.  B  /\  x  e.  A
)  /\  ph )  <->  ( x  e.  B  /\  (
x  e.  A  /\  ph ) ) )
53, 4bitrdi 196 . 2  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ph )  <->  ( x  e.  B  /\  (
x  e.  A  /\  ph ) ) ) )
65rexbidv2 2533 1  |-  ( A 
C_  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ( x  e.  A  /\  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   E.wrex 2509    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-rex 2514  df-in 3203  df-ss 3210
This theorem is referenced by:  1idprl  7773  1idpru  7774  ltexprlemm  7783  suplocexprlemmu  7901  oddnn02np1  12386  oddge22np1  12387  evennn02n  12388  evennn2n  12389  2lgslem1a  15761
  Copyright terms: Public domain W3C validator