ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexss Unicode version

Theorem rexss 3209
Description: Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rexss  |-  ( A 
C_  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ( x  e.  A  /\  ph ) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem rexss
StepHypRef Expression
1 ssel 3136 . . . . 5  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
21pm4.71rd 392 . . . 4  |-  ( A 
C_  B  ->  (
x  e.  A  <->  ( x  e.  B  /\  x  e.  A ) ) )
32anbi1d 461 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ph )  <->  ( (
x  e.  B  /\  x  e.  A )  /\  ph ) ) )
4 anass 399 . . 3  |-  ( ( ( x  e.  B  /\  x  e.  A
)  /\  ph )  <->  ( x  e.  B  /\  (
x  e.  A  /\  ph ) ) )
53, 4bitrdi 195 . 2  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ph )  <->  ( x  e.  B  /\  (
x  e.  A  /\  ph ) ) ) )
65rexbidv2 2469 1  |-  ( A 
C_  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ( x  e.  A  /\  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   E.wrex 2445    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-rex 2450  df-in 3122  df-ss 3129
This theorem is referenced by:  1idprl  7531  1idpru  7532  ltexprlemm  7541  suplocexprlemmu  7659  oddnn02np1  11817  oddge22np1  11818  evennn02n  11819  evennn2n  11820
  Copyright terms: Public domain W3C validator