| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexss | Unicode version | ||
| Description: Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| rexss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3186 |
. . . . 5
| |
| 2 | 1 | pm4.71rd 394 |
. . . 4
|
| 3 | 2 | anbi1d 465 |
. . 3
|
| 4 | anass 401 |
. . 3
| |
| 5 | 3, 4 | bitrdi 196 |
. 2
|
| 6 | 5 | rexbidv2 2508 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-rex 2489 df-in 3171 df-ss 3178 |
| This theorem is referenced by: 1idprl 7702 1idpru 7703 ltexprlemm 7712 suplocexprlemmu 7830 oddnn02np1 12162 oddge22np1 12163 evennn02n 12164 evennn2n 12165 2lgslem1a 15536 |
| Copyright terms: Public domain | W3C validator |