ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralv GIF version

Theorem ralv 2817
Description: A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
ralv (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑)

Proof of Theorem ralv
StepHypRef Expression
1 df-ral 2513 . 2 (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥(𝑥 ∈ V → 𝜑))
2 vex 2802 . . . 4 𝑥 ∈ V
32a1bi 243 . . 3 (𝜑 ↔ (𝑥 ∈ V → 𝜑))
43albii 1516 . 2 (∀𝑥𝜑 ↔ ∀𝑥(𝑥 ∈ V → 𝜑))
51, 4bitr4i 187 1 (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1393  wcel 2200  wral 2508  Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-v 2801
This theorem is referenced by:  ralcom4  2822  viin  4025  issref  5111  frecrdg  6554
  Copyright terms: Public domain W3C validator