| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralv | GIF version | ||
| Description: A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
| Ref | Expression |
|---|---|
| ralv | ⊢ (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2489 | . 2 ⊢ (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥(𝑥 ∈ V → 𝜑)) | |
| 2 | vex 2775 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | a1bi 243 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V → 𝜑)) |
| 4 | 3 | albii 1493 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑥(𝑥 ∈ V → 𝜑)) |
| 5 | 1, 4 | bitr4i 187 | 1 ⊢ (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 ∈ wcel 2176 ∀wral 2484 Vcvv 2772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-ral 2489 df-v 2774 |
| This theorem is referenced by: ralcom4 2794 viin 3987 issref 5065 frecrdg 6494 |
| Copyright terms: Public domain | W3C validator |