Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralv | GIF version |
Description: A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
Ref | Expression |
---|---|
ralv | ⊢ (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2453 | . 2 ⊢ (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥(𝑥 ∈ V → 𝜑)) | |
2 | vex 2733 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | a1bi 242 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V → 𝜑)) |
4 | 3 | albii 1463 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑥(𝑥 ∈ V → 𝜑)) |
5 | 1, 4 | bitr4i 186 | 1 ⊢ (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 ∈ wcel 2141 ∀wral 2448 Vcvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-ral 2453 df-v 2732 |
This theorem is referenced by: ralcom4 2752 viin 3932 issref 4993 frecrdg 6387 |
Copyright terms: Public domain | W3C validator |