ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecrdg Unicode version

Theorem frecrdg 6554
Description: Transfinite recursion restricted to omega.

Given a suitable characteristic function, df-frec 6537 produces the same results as df-irdg 6516 restricted to  om.

Presumably the theorem would also hold if  F  Fn  _V were changed to  A. z ( F `  z )  e.  _V. (Contributed by Jim Kingdon, 29-Aug-2019.)

Hypotheses
Ref Expression
frecrdg.1  |-  ( ph  ->  F  Fn  _V )
frecrdg.2  |-  ( ph  ->  A  e.  V )
frecrdg.inc  |-  ( ph  ->  A. x  x  C_  ( F `  x ) )
Assertion
Ref Expression
frecrdg  |-  ( ph  -> frec ( F ,  A
)  =  ( rec ( F ,  A
)  |`  om ) )
Distinct variable groups:    x, A    x, F    x, V    ph, x

Proof of Theorem frecrdg
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecrdg.1 . . . 4  |-  ( ph  ->  F  Fn  _V )
2 vex 2802 . . . . . 6  |-  z  e. 
_V
3 funfvex 5644 . . . . . . 7  |-  ( ( Fun  F  /\  z  e.  dom  F )  -> 
( F `  z
)  e.  _V )
43funfni 5423 . . . . . 6  |-  ( ( F  Fn  _V  /\  z  e.  _V )  ->  ( F `  z
)  e.  _V )
52, 4mpan2 425 . . . . 5  |-  ( F  Fn  _V  ->  ( F `  z )  e.  _V )
65alrimiv 1920 . . . 4  |-  ( F  Fn  _V  ->  A. z
( F `  z
)  e.  _V )
71, 6syl 14 . . 3  |-  ( ph  ->  A. z ( F `
 z )  e. 
_V )
8 frecrdg.2 . . 3  |-  ( ph  ->  A  e.  V )
9 frecfnom 6547 . . 3  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  -> frec ( F ,  A )  Fn 
om )
107, 8, 9syl2anc 411 . 2  |-  ( ph  -> frec ( F ,  A
)  Fn  om )
11 rdgifnon2 6526 . . . 4  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  rec ( F ,  A )  Fn  On )
127, 8, 11syl2anc 411 . . 3  |-  ( ph  ->  rec ( F ,  A )  Fn  On )
13 omsson 4705 . . 3  |-  om  C_  On
14 fnssres 5436 . . 3  |-  ( ( rec ( F ,  A )  Fn  On  /\ 
om  C_  On )  -> 
( rec ( F ,  A )  |`  om )  Fn  om )
1512, 13, 14sylancl 413 . 2  |-  ( ph  ->  ( rec ( F ,  A )  |`  om )  Fn  om )
16 fveq2 5627 . . . . 5  |-  ( x  =  (/)  ->  (frec ( F ,  A ) `
 x )  =  (frec ( F ,  A ) `  (/) ) )
17 fveq2 5627 . . . . 5  |-  ( x  =  (/)  ->  ( ( rec ( F ,  A )  |`  om ) `  x )  =  ( ( rec ( F ,  A )  |`  om ) `  (/) ) )
1816, 17eqeq12d 2244 . . . 4  |-  ( x  =  (/)  ->  ( (frec ( F ,  A
) `  x )  =  ( ( rec ( F ,  A
)  |`  om ) `  x )  <->  (frec ( F ,  A ) `  (/) )  =  ( ( rec ( F ,  A )  |`  om ) `  (/) ) ) )
19 fveq2 5627 . . . . 5  |-  ( x  =  y  ->  (frec ( F ,  A ) `
 x )  =  (frec ( F ,  A ) `  y
) )
20 fveq2 5627 . . . . 5  |-  ( x  =  y  ->  (
( rec ( F ,  A )  |`  om ) `  x )  =  ( ( rec ( F ,  A
)  |`  om ) `  y ) )
2119, 20eqeq12d 2244 . . . 4  |-  ( x  =  y  ->  (
(frec ( F ,  A ) `  x
)  =  ( ( rec ( F ,  A )  |`  om ) `  x )  <->  (frec ( F ,  A ) `  y )  =  ( ( rec ( F ,  A )  |`  om ) `  y ) ) )
22 fveq2 5627 . . . . 5  |-  ( x  =  suc  y  -> 
(frec ( F ,  A ) `  x
)  =  (frec ( F ,  A ) `
 suc  y )
)
23 fveq2 5627 . . . . 5  |-  ( x  =  suc  y  -> 
( ( rec ( F ,  A )  |` 
om ) `  x
)  =  ( ( rec ( F ,  A )  |`  om ) `  suc  y ) )
2422, 23eqeq12d 2244 . . . 4  |-  ( x  =  suc  y  -> 
( (frec ( F ,  A ) `  x )  =  ( ( rec ( F ,  A )  |`  om ) `  x )  <-> 
(frec ( F ,  A ) `  suc  y )  =  ( ( rec ( F ,  A )  |`  om ) `  suc  y
) ) )
25 frec0g 6543 . . . . . 6  |-  ( A  e.  V  ->  (frec ( F ,  A ) `
 (/) )  =  A )
268, 25syl 14 . . . . 5  |-  ( ph  ->  (frec ( F ,  A ) `  (/) )  =  A )
27 peano1 4686 . . . . . . 7  |-  (/)  e.  om
28 fvres 5651 . . . . . . 7  |-  ( (/)  e.  om  ->  ( ( rec ( F ,  A
)  |`  om ) `  (/) )  =  ( rec ( F ,  A
) `  (/) ) )
2927, 28ax-mp 5 . . . . . 6  |-  ( ( rec ( F ,  A )  |`  om ) `  (/) )  =  ( rec ( F ,  A ) `  (/) )
30 rdg0g 6534 . . . . . . 7  |-  ( A  e.  V  ->  ( rec ( F ,  A
) `  (/) )  =  A )
318, 30syl 14 . . . . . 6  |-  ( ph  ->  ( rec ( F ,  A ) `  (/) )  =  A )
3229, 31eqtrid 2274 . . . . 5  |-  ( ph  ->  ( ( rec ( F ,  A )  |` 
om ) `  (/) )  =  A )
3326, 32eqtr4d 2265 . . . 4  |-  ( ph  ->  (frec ( F ,  A ) `  (/) )  =  ( ( rec ( F ,  A )  |` 
om ) `  (/) ) )
34 simpr 110 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  om )  /\  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )  ->  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )
35 fvres 5651 . . . . . . . . . . 11  |-  ( y  e.  om  ->  (
( rec ( F ,  A )  |`  om ) `  y )  =  ( rec ( F ,  A ) `  y ) )
3635ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  om )  /\  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )  ->  (
( rec ( F ,  A )  |`  om ) `  y )  =  ( rec ( F ,  A ) `  y ) )
3734, 36eqtrd 2262 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  om )  /\  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )  ->  (frec ( F ,  A ) `
 y )  =  ( rec ( F ,  A ) `  y ) )
3837fveq2d 5631 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om )  /\  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )  ->  ( F `  (frec ( F ,  A ) `  y ) )  =  ( F `  ( rec ( F ,  A
) `  y )
) )
397, 8jca 306 . . . . . . . . . 10  |-  ( ph  ->  ( A. z ( F `  z )  e.  _V  /\  A  e.  V ) )
40 simp1 1021 . . . . . . . . . . . . 13  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  y  e.  om )  ->  A. z ( F `
 z )  e. 
_V )
41 ralv 2817 . . . . . . . . . . . . 13  |-  ( A. z  e.  _V  ( F `  z )  e.  _V  <->  A. z ( F `
 z )  e. 
_V )
4240, 41sylibr 134 . . . . . . . . . . . 12  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  y  e.  om )  ->  A. z  e.  _V  ( F `  z )  e.  _V )
43 simp2 1022 . . . . . . . . . . . . 13  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  y  e.  om )  ->  A  e.  V
)
4443elexd 2813 . . . . . . . . . . . 12  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  y  e.  om )  ->  A  e.  _V )
45 simp3 1023 . . . . . . . . . . . 12  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  y  e.  om )  ->  y  e.  om )
46 frecsuc 6553 . . . . . . . . . . . 12  |-  ( ( A. z  e.  _V  ( F `  z )  e.  _V  /\  A  e.  _V  /\  y  e. 
om )  ->  (frec ( F ,  A ) `
 suc  y )  =  ( F `  (frec ( F ,  A
) `  y )
) )
4742, 44, 45, 46syl3anc 1271 . . . . . . . . . . 11  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  y  e.  om )  ->  (frec ( F ,  A ) `  suc  y )  =  ( F `  (frec ( F ,  A ) `
 y ) ) )
48473expa 1227 . . . . . . . . . 10  |-  ( ( ( A. z ( F `  z )  e.  _V  /\  A  e.  V )  /\  y  e.  om )  ->  (frec ( F ,  A ) `
 suc  y )  =  ( F `  (frec ( F ,  A
) `  y )
) )
4939, 48sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  om )  ->  (frec ( F ,  A ) `  suc  y )  =  ( F `  (frec ( F ,  A ) `
 y ) ) )
5049adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om )  /\  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )  ->  (frec ( F ,  A ) `
 suc  y )  =  ( F `  (frec ( F ,  A
) `  y )
) )
511adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  om )  ->  F  Fn  _V )
528adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  om )  ->  A  e.  V )
53 simpr 110 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om )  ->  y  e.  om )
54 nnon 4702 . . . . . . . . . . 11  |-  ( y  e.  om  ->  y  e.  On )
5553, 54syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  om )  ->  y  e.  On )
56 frecrdg.inc . . . . . . . . . . 11  |-  ( ph  ->  A. x  x  C_  ( F `  x ) )
5756adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  om )  ->  A. x  x  C_  ( F `  x ) )
5851, 52, 55, 57rdgisucinc 6531 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  om )  ->  ( rec ( F ,  A ) `
 suc  y )  =  ( F `  ( rec ( F ,  A ) `  y
) ) )
5958adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om )  /\  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )  ->  ( rec ( F ,  A
) `  suc  y )  =  ( F `  ( rec ( F ,  A ) `  y
) ) )
6038, 50, 593eqtr4d 2272 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  om )  /\  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )  ->  (frec ( F ,  A ) `
 suc  y )  =  ( rec ( F ,  A ) `  suc  y ) )
61 peano2 4687 . . . . . . . . 9  |-  ( y  e.  om  ->  suc  y  e.  om )
62 fvres 5651 . . . . . . . . 9  |-  ( suc  y  e.  om  ->  ( ( rec ( F ,  A )  |`  om ) `  suc  y
)  =  ( rec ( F ,  A
) `  suc  y ) )
6361, 62syl 14 . . . . . . . 8  |-  ( y  e.  om  ->  (
( rec ( F ,  A )  |`  om ) `  suc  y
)  =  ( rec ( F ,  A
) `  suc  y ) )
6463ad2antlr 489 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  om )  /\  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )  ->  (
( rec ( F ,  A )  |`  om ) `  suc  y
)  =  ( rec ( F ,  A
) `  suc  y ) )
6560, 64eqtr4d 2265 . . . . . 6  |-  ( ( ( ph  /\  y  e.  om )  /\  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )  ->  (frec ( F ,  A ) `
 suc  y )  =  ( ( rec ( F ,  A
)  |`  om ) `  suc  y ) )
6665ex 115 . . . . 5  |-  ( (
ph  /\  y  e.  om )  ->  ( (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
)  ->  (frec ( F ,  A ) `  suc  y )  =  ( ( rec ( F ,  A )  |` 
om ) `  suc  y ) ) )
6766expcom 116 . . . 4  |-  ( y  e.  om  ->  ( ph  ->  ( (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
)  ->  (frec ( F ,  A ) `  suc  y )  =  ( ( rec ( F ,  A )  |` 
om ) `  suc  y ) ) ) )
6818, 21, 24, 33, 67finds2 4693 . . 3  |-  ( x  e.  om  ->  ( ph  ->  (frec ( F ,  A ) `  x )  =  ( ( rec ( F ,  A )  |`  om ) `  x ) ) )
6968impcom 125 . 2  |-  ( (
ph  /\  x  e.  om )  ->  (frec ( F ,  A ) `  x )  =  ( ( rec ( F ,  A )  |`  om ) `  x ) )
7010, 15, 69eqfnfvd 5735 1  |-  ( ph  -> frec ( F ,  A
)  =  ( rec ( F ,  A
)  |`  om ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002   A.wal 1393    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197   (/)c0 3491   Oncon0 4454   suc csuc 4456   omcom 4682    |` cres 4721    Fn wfn 5313   ` cfv 5318   reccrdg 6515  freccfrec 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-recs 6451  df-irdg 6516  df-frec 6537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator