ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecrdg Unicode version

Theorem frecrdg 6235
Description: Transfinite recursion restricted to omega.

Given a suitable characteristic function, df-frec 6218 produces the same results as df-irdg 6197 restricted to  om.

Presumably the theorem would also hold if  F  Fn  _V were changed to  A. z ( F `  z )  e.  _V. (Contributed by Jim Kingdon, 29-Aug-2019.)

Hypotheses
Ref Expression
frecrdg.1  |-  ( ph  ->  F  Fn  _V )
frecrdg.2  |-  ( ph  ->  A  e.  V )
frecrdg.inc  |-  ( ph  ->  A. x  x  C_  ( F `  x ) )
Assertion
Ref Expression
frecrdg  |-  ( ph  -> frec ( F ,  A
)  =  ( rec ( F ,  A
)  |`  om ) )
Distinct variable groups:    x, A    x, F    x, V    ph, x

Proof of Theorem frecrdg
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecrdg.1 . . . 4  |-  ( ph  ->  F  Fn  _V )
2 vex 2644 . . . . . 6  |-  z  e. 
_V
3 funfvex 5370 . . . . . . 7  |-  ( ( Fun  F  /\  z  e.  dom  F )  -> 
( F `  z
)  e.  _V )
43funfni 5159 . . . . . 6  |-  ( ( F  Fn  _V  /\  z  e.  _V )  ->  ( F `  z
)  e.  _V )
52, 4mpan2 419 . . . . 5  |-  ( F  Fn  _V  ->  ( F `  z )  e.  _V )
65alrimiv 1813 . . . 4  |-  ( F  Fn  _V  ->  A. z
( F `  z
)  e.  _V )
71, 6syl 14 . . 3  |-  ( ph  ->  A. z ( F `
 z )  e. 
_V )
8 frecrdg.2 . . 3  |-  ( ph  ->  A  e.  V )
9 frecfnom 6228 . . 3  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  -> frec ( F ,  A )  Fn 
om )
107, 8, 9syl2anc 406 . 2  |-  ( ph  -> frec ( F ,  A
)  Fn  om )
11 rdgifnon2 6207 . . . 4  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  rec ( F ,  A )  Fn  On )
127, 8, 11syl2anc 406 . . 3  |-  ( ph  ->  rec ( F ,  A )  Fn  On )
13 omsson 4464 . . 3  |-  om  C_  On
14 fnssres 5172 . . 3  |-  ( ( rec ( F ,  A )  Fn  On  /\ 
om  C_  On )  -> 
( rec ( F ,  A )  |`  om )  Fn  om )
1512, 13, 14sylancl 407 . 2  |-  ( ph  ->  ( rec ( F ,  A )  |`  om )  Fn  om )
16 fveq2 5353 . . . . 5  |-  ( x  =  (/)  ->  (frec ( F ,  A ) `
 x )  =  (frec ( F ,  A ) `  (/) ) )
17 fveq2 5353 . . . . 5  |-  ( x  =  (/)  ->  ( ( rec ( F ,  A )  |`  om ) `  x )  =  ( ( rec ( F ,  A )  |`  om ) `  (/) ) )
1816, 17eqeq12d 2114 . . . 4  |-  ( x  =  (/)  ->  ( (frec ( F ,  A
) `  x )  =  ( ( rec ( F ,  A
)  |`  om ) `  x )  <->  (frec ( F ,  A ) `  (/) )  =  ( ( rec ( F ,  A )  |`  om ) `  (/) ) ) )
19 fveq2 5353 . . . . 5  |-  ( x  =  y  ->  (frec ( F ,  A ) `
 x )  =  (frec ( F ,  A ) `  y
) )
20 fveq2 5353 . . . . 5  |-  ( x  =  y  ->  (
( rec ( F ,  A )  |`  om ) `  x )  =  ( ( rec ( F ,  A
)  |`  om ) `  y ) )
2119, 20eqeq12d 2114 . . . 4  |-  ( x  =  y  ->  (
(frec ( F ,  A ) `  x
)  =  ( ( rec ( F ,  A )  |`  om ) `  x )  <->  (frec ( F ,  A ) `  y )  =  ( ( rec ( F ,  A )  |`  om ) `  y ) ) )
22 fveq2 5353 . . . . 5  |-  ( x  =  suc  y  -> 
(frec ( F ,  A ) `  x
)  =  (frec ( F ,  A ) `
 suc  y )
)
23 fveq2 5353 . . . . 5  |-  ( x  =  suc  y  -> 
( ( rec ( F ,  A )  |` 
om ) `  x
)  =  ( ( rec ( F ,  A )  |`  om ) `  suc  y ) )
2422, 23eqeq12d 2114 . . . 4  |-  ( x  =  suc  y  -> 
( (frec ( F ,  A ) `  x )  =  ( ( rec ( F ,  A )  |`  om ) `  x )  <-> 
(frec ( F ,  A ) `  suc  y )  =  ( ( rec ( F ,  A )  |`  om ) `  suc  y
) ) )
25 frec0g 6224 . . . . . 6  |-  ( A  e.  V  ->  (frec ( F ,  A ) `
 (/) )  =  A )
268, 25syl 14 . . . . 5  |-  ( ph  ->  (frec ( F ,  A ) `  (/) )  =  A )
27 peano1 4446 . . . . . . 7  |-  (/)  e.  om
28 fvres 5377 . . . . . . 7  |-  ( (/)  e.  om  ->  ( ( rec ( F ,  A
)  |`  om ) `  (/) )  =  ( rec ( F ,  A
) `  (/) ) )
2927, 28ax-mp 7 . . . . . 6  |-  ( ( rec ( F ,  A )  |`  om ) `  (/) )  =  ( rec ( F ,  A ) `  (/) )
30 rdg0g 6215 . . . . . . 7  |-  ( A  e.  V  ->  ( rec ( F ,  A
) `  (/) )  =  A )
318, 30syl 14 . . . . . 6  |-  ( ph  ->  ( rec ( F ,  A ) `  (/) )  =  A )
3229, 31syl5eq 2144 . . . . 5  |-  ( ph  ->  ( ( rec ( F ,  A )  |` 
om ) `  (/) )  =  A )
3326, 32eqtr4d 2135 . . . 4  |-  ( ph  ->  (frec ( F ,  A ) `  (/) )  =  ( ( rec ( F ,  A )  |` 
om ) `  (/) ) )
34 simpr 109 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  om )  /\  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )  ->  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )
35 fvres 5377 . . . . . . . . . . 11  |-  ( y  e.  om  ->  (
( rec ( F ,  A )  |`  om ) `  y )  =  ( rec ( F ,  A ) `  y ) )
3635ad2antlr 476 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  om )  /\  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )  ->  (
( rec ( F ,  A )  |`  om ) `  y )  =  ( rec ( F ,  A ) `  y ) )
3734, 36eqtrd 2132 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  om )  /\  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )  ->  (frec ( F ,  A ) `
 y )  =  ( rec ( F ,  A ) `  y ) )
3837fveq2d 5357 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om )  /\  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )  ->  ( F `  (frec ( F ,  A ) `  y ) )  =  ( F `  ( rec ( F ,  A
) `  y )
) )
397, 8jca 302 . . . . . . . . . 10  |-  ( ph  ->  ( A. z ( F `  z )  e.  _V  /\  A  e.  V ) )
40 simp1 949 . . . . . . . . . . . . 13  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  y  e.  om )  ->  A. z ( F `
 z )  e. 
_V )
41 ralv 2658 . . . . . . . . . . . . 13  |-  ( A. z  e.  _V  ( F `  z )  e.  _V  <->  A. z ( F `
 z )  e. 
_V )
4240, 41sylibr 133 . . . . . . . . . . . 12  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  y  e.  om )  ->  A. z  e.  _V  ( F `  z )  e.  _V )
43 simp2 950 . . . . . . . . . . . . 13  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  y  e.  om )  ->  A  e.  V
)
4443elexd 2654 . . . . . . . . . . . 12  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  y  e.  om )  ->  A  e.  _V )
45 simp3 951 . . . . . . . . . . . 12  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  y  e.  om )  ->  y  e.  om )
46 frecsuc 6234 . . . . . . . . . . . 12  |-  ( ( A. z  e.  _V  ( F `  z )  e.  _V  /\  A  e.  _V  /\  y  e. 
om )  ->  (frec ( F ,  A ) `
 suc  y )  =  ( F `  (frec ( F ,  A
) `  y )
) )
4742, 44, 45, 46syl3anc 1184 . . . . . . . . . . 11  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  y  e.  om )  ->  (frec ( F ,  A ) `  suc  y )  =  ( F `  (frec ( F ,  A ) `
 y ) ) )
48473expa 1149 . . . . . . . . . 10  |-  ( ( ( A. z ( F `  z )  e.  _V  /\  A  e.  V )  /\  y  e.  om )  ->  (frec ( F ,  A ) `
 suc  y )  =  ( F `  (frec ( F ,  A
) `  y )
) )
4939, 48sylan 279 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  om )  ->  (frec ( F ,  A ) `  suc  y )  =  ( F `  (frec ( F ,  A ) `
 y ) ) )
5049adantr 272 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om )  /\  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )  ->  (frec ( F ,  A ) `
 suc  y )  =  ( F `  (frec ( F ,  A
) `  y )
) )
511adantr 272 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  om )  ->  F  Fn  _V )
528adantr 272 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  om )  ->  A  e.  V )
53 simpr 109 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om )  ->  y  e.  om )
54 nnon 4461 . . . . . . . . . . 11  |-  ( y  e.  om  ->  y  e.  On )
5553, 54syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  om )  ->  y  e.  On )
56 frecrdg.inc . . . . . . . . . . 11  |-  ( ph  ->  A. x  x  C_  ( F `  x ) )
5756adantr 272 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  om )  ->  A. x  x  C_  ( F `  x ) )
5851, 52, 55, 57rdgisucinc 6212 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  om )  ->  ( rec ( F ,  A ) `
 suc  y )  =  ( F `  ( rec ( F ,  A ) `  y
) ) )
5958adantr 272 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om )  /\  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )  ->  ( rec ( F ,  A
) `  suc  y )  =  ( F `  ( rec ( F ,  A ) `  y
) ) )
6038, 50, 593eqtr4d 2142 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  om )  /\  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )  ->  (frec ( F ,  A ) `
 suc  y )  =  ( rec ( F ,  A ) `  suc  y ) )
61 peano2 4447 . . . . . . . . 9  |-  ( y  e.  om  ->  suc  y  e.  om )
62 fvres 5377 . . . . . . . . 9  |-  ( suc  y  e.  om  ->  ( ( rec ( F ,  A )  |`  om ) `  suc  y
)  =  ( rec ( F ,  A
) `  suc  y ) )
6361, 62syl 14 . . . . . . . 8  |-  ( y  e.  om  ->  (
( rec ( F ,  A )  |`  om ) `  suc  y
)  =  ( rec ( F ,  A
) `  suc  y ) )
6463ad2antlr 476 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  om )  /\  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )  ->  (
( rec ( F ,  A )  |`  om ) `  suc  y
)  =  ( rec ( F ,  A
) `  suc  y ) )
6560, 64eqtr4d 2135 . . . . . 6  |-  ( ( ( ph  /\  y  e.  om )  /\  (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
) )  ->  (frec ( F ,  A ) `
 suc  y )  =  ( ( rec ( F ,  A
)  |`  om ) `  suc  y ) )
6665ex 114 . . . . 5  |-  ( (
ph  /\  y  e.  om )  ->  ( (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
)  ->  (frec ( F ,  A ) `  suc  y )  =  ( ( rec ( F ,  A )  |` 
om ) `  suc  y ) ) )
6766expcom 115 . . . 4  |-  ( y  e.  om  ->  ( ph  ->  ( (frec ( F ,  A ) `
 y )  =  ( ( rec ( F ,  A )  |` 
om ) `  y
)  ->  (frec ( F ,  A ) `  suc  y )  =  ( ( rec ( F ,  A )  |` 
om ) `  suc  y ) ) ) )
6818, 21, 24, 33, 67finds2 4453 . . 3  |-  ( x  e.  om  ->  ( ph  ->  (frec ( F ,  A ) `  x )  =  ( ( rec ( F ,  A )  |`  om ) `  x ) ) )
6968impcom 124 . 2  |-  ( (
ph  /\  x  e.  om )  ->  (frec ( F ,  A ) `  x )  =  ( ( rec ( F ,  A )  |`  om ) `  x ) )
7010, 15, 69eqfnfvd 5453 1  |-  ( ph  -> frec ( F ,  A
)  =  ( rec ( F ,  A
)  |`  om ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 930   A.wal 1297    = wceq 1299    e. wcel 1448   A.wral 2375   _Vcvv 2641    C_ wss 3021   (/)c0 3310   Oncon0 4223   suc csuc 4225   omcom 4442    |` cres 4479    Fn wfn 5054   ` cfv 5059   reccrdg 6196  freccfrec 6217
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-recs 6132  df-irdg 6197  df-frec 6218
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator