Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralcom4 | Unicode version |
Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
ralcom4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 2627 | . 2 | |
2 | ralv 2739 | . . 3 | |
3 | 2 | ralbii 2470 | . 2 |
4 | ralv 2739 | . 2 | |
5 | 1, 3, 4 | 3bitr3i 209 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wal 1340 wral 2442 cvv 2722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-v 2724 |
This theorem is referenced by: uniiunlem 3227 uni0b 3809 iunss 3902 disjnim 3968 trint 4090 reliun 4720 funimass4 5532 ralrnmpo 5948 |
Copyright terms: Public domain | W3C validator |