ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralcom4 Unicode version

Theorem ralcom4 2799
Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
ralcom4  |-  ( A. x  e.  A  A. y ph  <->  A. y A. x  e.  A  ph )
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem ralcom4
StepHypRef Expression
1 ralcom 2671 . 2  |-  ( A. x  e.  A  A. y  e.  _V  ph  <->  A. y  e.  _V  A. x  e.  A  ph )
2 ralv 2794 . . 3  |-  ( A. y  e.  _V  ph  <->  A. y ph )
32ralbii 2514 . 2  |-  ( A. x  e.  A  A. y  e.  _V  ph  <->  A. x  e.  A  A. y ph )
4 ralv 2794 . 2  |-  ( A. y  e.  _V  A. x  e.  A  ph  <->  A. y A. x  e.  A  ph )
51, 3, 43bitr3i 210 1  |-  ( A. x  e.  A  A. y ph  <->  A. y A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1371   A.wral 2486   _Vcvv 2776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778
This theorem is referenced by:  uniiunlem  3290  uni0b  3889  iunss  3982  disjnim  4049  trint  4173  reliun  4814  funimass4  5652  ralrnmpo  6083  uchoice  6246
  Copyright terms: Public domain W3C validator