ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundif Unicode version

Theorem fundif 5317
Description: A function with removed elements is still a function. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
fundif  |-  ( Fun 
F  ->  Fun  ( F 
\  A ) )

Proof of Theorem fundif
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldif 4794 . . 3  |-  ( Rel 
F  ->  Rel  ( F 
\  A ) )
2 brdif 4096 . . . . . . 7  |-  ( x ( F  \  A
) y  <->  ( x F y  /\  -.  x A y ) )
3 brdif 4096 . . . . . . 7  |-  ( x ( F  \  A
) z  <->  ( x F z  /\  -.  x A z ) )
4 pm2.27 40 . . . . . . . 8  |-  ( ( x F y  /\  x F z )  -> 
( ( ( x F y  /\  x F z )  -> 
y  =  z )  ->  y  =  z ) )
54ad2ant2r 509 . . . . . . 7  |-  ( ( ( x F y  /\  -.  x A y )  /\  (
x F z  /\  -.  x A z ) )  ->  ( (
( x F y  /\  x F z )  ->  y  =  z )  ->  y  =  z ) )
62, 3, 5syl2anb 291 . . . . . 6  |-  ( ( x ( F  \  A ) y  /\  x ( F  \  A ) z )  ->  ( ( ( x F y  /\  x F z )  -> 
y  =  z )  ->  y  =  z ) )
76com12 30 . . . . 5  |-  ( ( ( x F y  /\  x F z )  ->  y  =  z )  ->  (
( x ( F 
\  A ) y  /\  x ( F 
\  A ) z )  ->  y  =  z ) )
87alimi 1477 . . . 4  |-  ( A. z ( ( x F y  /\  x F z )  -> 
y  =  z )  ->  A. z ( ( x ( F  \  A ) y  /\  x ( F  \  A ) z )  ->  y  =  z ) )
982alimi 1478 . . 3  |-  ( A. x A. y A. z
( ( x F y  /\  x F z )  ->  y  =  z )  ->  A. x A. y A. z ( ( x ( F  \  A
) y  /\  x
( F  \  A
) z )  -> 
y  =  z ) )
101, 9anim12i 338 . 2  |-  ( ( Rel  F  /\  A. x A. y A. z
( ( x F y  /\  x F z )  ->  y  =  z ) )  ->  ( Rel  ( F  \  A )  /\  A. x A. y A. z ( ( x ( F  \  A
) y  /\  x
( F  \  A
) z )  -> 
y  =  z ) ) )
11 dffun2 5280 . 2  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x A. y A. z ( ( x F y  /\  x F z )  -> 
y  =  z ) ) )
12 dffun2 5280 . 2  |-  ( Fun  ( F  \  A
)  <->  ( Rel  ( F  \  A )  /\  A. x A. y A. z ( ( x ( F  \  A
) y  /\  x
( F  \  A
) z )  -> 
y  =  z ) ) )
1310, 11, 123imtr4i 201 1  |-  ( Fun 
F  ->  Fun  ( F 
\  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1370    \ cdif 3162   class class class wbr 4043   Rel wrel 4679   Fun wfun 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-id 4339  df-rel 4681  df-cnv 4682  df-co 4683  df-fun 5272
This theorem is referenced by:  fundm2domnop  10989  fun2dmnop  10991
  Copyright terms: Public domain W3C validator