ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundif Unicode version

Theorem fundif 5364
Description: A function with removed elements is still a function. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
fundif  |-  ( Fun 
F  ->  Fun  ( F 
\  A ) )

Proof of Theorem fundif
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldif 4838 . . 3  |-  ( Rel 
F  ->  Rel  ( F 
\  A ) )
2 brdif 4136 . . . . . . 7  |-  ( x ( F  \  A
) y  <->  ( x F y  /\  -.  x A y ) )
3 brdif 4136 . . . . . . 7  |-  ( x ( F  \  A
) z  <->  ( x F z  /\  -.  x A z ) )
4 pm2.27 40 . . . . . . . 8  |-  ( ( x F y  /\  x F z )  -> 
( ( ( x F y  /\  x F z )  -> 
y  =  z )  ->  y  =  z ) )
54ad2ant2r 509 . . . . . . 7  |-  ( ( ( x F y  /\  -.  x A y )  /\  (
x F z  /\  -.  x A z ) )  ->  ( (
( x F y  /\  x F z )  ->  y  =  z )  ->  y  =  z ) )
62, 3, 5syl2anb 291 . . . . . 6  |-  ( ( x ( F  \  A ) y  /\  x ( F  \  A ) z )  ->  ( ( ( x F y  /\  x F z )  -> 
y  =  z )  ->  y  =  z ) )
76com12 30 . . . . 5  |-  ( ( ( x F y  /\  x F z )  ->  y  =  z )  ->  (
( x ( F 
\  A ) y  /\  x ( F 
\  A ) z )  ->  y  =  z ) )
87alimi 1501 . . . 4  |-  ( A. z ( ( x F y  /\  x F z )  -> 
y  =  z )  ->  A. z ( ( x ( F  \  A ) y  /\  x ( F  \  A ) z )  ->  y  =  z ) )
982alimi 1502 . . 3  |-  ( A. x A. y A. z
( ( x F y  /\  x F z )  ->  y  =  z )  ->  A. x A. y A. z ( ( x ( F  \  A
) y  /\  x
( F  \  A
) z )  -> 
y  =  z ) )
101, 9anim12i 338 . 2  |-  ( ( Rel  F  /\  A. x A. y A. z
( ( x F y  /\  x F z )  ->  y  =  z ) )  ->  ( Rel  ( F  \  A )  /\  A. x A. y A. z ( ( x ( F  \  A
) y  /\  x
( F  \  A
) z )  -> 
y  =  z ) ) )
11 dffun2 5327 . 2  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x A. y A. z ( ( x F y  /\  x F z )  -> 
y  =  z ) ) )
12 dffun2 5327 . 2  |-  ( Fun  ( F  \  A
)  <->  ( Rel  ( F  \  A )  /\  A. x A. y A. z ( ( x ( F  \  A
) y  /\  x
( F  \  A
) z )  -> 
y  =  z ) ) )
1310, 11, 123imtr4i 201 1  |-  ( Fun 
F  ->  Fun  ( F 
\  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1393    \ cdif 3194   class class class wbr 4082   Rel wrel 4723   Fun wfun 5311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-rel 4725  df-cnv 4726  df-co 4727  df-fun 5319
This theorem is referenced by:  fundm2domnop  11063  fun2dmnop  11065  edgstruct  15858
  Copyright terms: Public domain W3C validator