ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundif Unicode version

Theorem fundif 5327
Description: A function with removed elements is still a function. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
fundif  |-  ( Fun 
F  ->  Fun  ( F 
\  A ) )

Proof of Theorem fundif
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldif 4803 . . 3  |-  ( Rel 
F  ->  Rel  ( F 
\  A ) )
2 brdif 4105 . . . . . . 7  |-  ( x ( F  \  A
) y  <->  ( x F y  /\  -.  x A y ) )
3 brdif 4105 . . . . . . 7  |-  ( x ( F  \  A
) z  <->  ( x F z  /\  -.  x A z ) )
4 pm2.27 40 . . . . . . . 8  |-  ( ( x F y  /\  x F z )  -> 
( ( ( x F y  /\  x F z )  -> 
y  =  z )  ->  y  =  z ) )
54ad2ant2r 509 . . . . . . 7  |-  ( ( ( x F y  /\  -.  x A y )  /\  (
x F z  /\  -.  x A z ) )  ->  ( (
( x F y  /\  x F z )  ->  y  =  z )  ->  y  =  z ) )
62, 3, 5syl2anb 291 . . . . . 6  |-  ( ( x ( F  \  A ) y  /\  x ( F  \  A ) z )  ->  ( ( ( x F y  /\  x F z )  -> 
y  =  z )  ->  y  =  z ) )
76com12 30 . . . . 5  |-  ( ( ( x F y  /\  x F z )  ->  y  =  z )  ->  (
( x ( F 
\  A ) y  /\  x ( F 
\  A ) z )  ->  y  =  z ) )
87alimi 1479 . . . 4  |-  ( A. z ( ( x F y  /\  x F z )  -> 
y  =  z )  ->  A. z ( ( x ( F  \  A ) y  /\  x ( F  \  A ) z )  ->  y  =  z ) )
982alimi 1480 . . 3  |-  ( A. x A. y A. z
( ( x F y  /\  x F z )  ->  y  =  z )  ->  A. x A. y A. z ( ( x ( F  \  A
) y  /\  x
( F  \  A
) z )  -> 
y  =  z ) )
101, 9anim12i 338 . 2  |-  ( ( Rel  F  /\  A. x A. y A. z
( ( x F y  /\  x F z )  ->  y  =  z ) )  ->  ( Rel  ( F  \  A )  /\  A. x A. y A. z ( ( x ( F  \  A
) y  /\  x
( F  \  A
) z )  -> 
y  =  z ) ) )
11 dffun2 5290 . 2  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x A. y A. z ( ( x F y  /\  x F z )  -> 
y  =  z ) ) )
12 dffun2 5290 . 2  |-  ( Fun  ( F  \  A
)  <->  ( Rel  ( F  \  A )  /\  A. x A. y A. z ( ( x ( F  \  A
) y  /\  x
( F  \  A
) z )  -> 
y  =  z ) ) )
1310, 11, 123imtr4i 201 1  |-  ( Fun 
F  ->  Fun  ( F 
\  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1371    \ cdif 3167   class class class wbr 4051   Rel wrel 4688   Fun wfun 5274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-id 4348  df-rel 4690  df-cnv 4691  df-co 4692  df-fun 5282
This theorem is referenced by:  fundm2domnop  11013  fun2dmnop  11015  edgstruct  15735
  Copyright terms: Public domain W3C validator