ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reliun Unicode version

Theorem reliun 4546
Description: An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008.)
Assertion
Ref Expression
reliun  |-  ( Rel  U_ x  e.  A  B 
<-> 
A. x  e.  A  Rel  B )

Proof of Theorem reliun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-iun 3727 . . 3  |-  U_ x  e.  A  B  =  { y  |  E. x  e.  A  y  e.  B }
21releqi 4509 . 2  |-  ( Rel  U_ x  e.  A  B 
<->  Rel  { y  |  E. x  e.  A  y  e.  B }
)
3 df-rel 4435 . 2  |-  ( Rel 
{ y  |  E. x  e.  A  y  e.  B }  <->  { y  |  E. x  e.  A  y  e.  B }  C_  ( _V  X.  _V ) )
4 abss 3088 . . 3  |-  ( { y  |  E. x  e.  A  y  e.  B }  C_  ( _V 
X.  _V )  <->  A. y
( E. x  e.  A  y  e.  B  ->  y  e.  ( _V 
X.  _V ) ) )
5 df-rel 4435 . . . . . 6  |-  ( Rel 
B  <->  B  C_  ( _V 
X.  _V ) )
6 dfss2 3012 . . . . . 6  |-  ( B 
C_  ( _V  X.  _V )  <->  A. y ( y  e.  B  ->  y  e.  ( _V  X.  _V ) ) )
75, 6bitri 182 . . . . 5  |-  ( Rel 
B  <->  A. y ( y  e.  B  ->  y  e.  ( _V  X.  _V ) ) )
87ralbii 2384 . . . 4  |-  ( A. x  e.  A  Rel  B  <->  A. x  e.  A  A. y ( y  e.  B  ->  y  e.  ( _V  X.  _V )
) )
9 ralcom4 2641 . . . 4  |-  ( A. x  e.  A  A. y ( y  e.  B  ->  y  e.  ( _V  X.  _V )
)  <->  A. y A. x  e.  A  ( y  e.  B  ->  y  e.  ( _V  X.  _V ) ) )
10 r19.23v 2481 . . . . 5  |-  ( A. x  e.  A  (
y  e.  B  -> 
y  e.  ( _V 
X.  _V ) )  <->  ( E. x  e.  A  y  e.  B  ->  y  e.  ( _V  X.  _V ) ) )
1110albii 1404 . . . 4  |-  ( A. y A. x  e.  A  ( y  e.  B  ->  y  e.  ( _V 
X.  _V ) )  <->  A. y
( E. x  e.  A  y  e.  B  ->  y  e.  ( _V 
X.  _V ) ) )
128, 9, 113bitri 204 . . 3  |-  ( A. x  e.  A  Rel  B  <->  A. y ( E. x  e.  A  y  e.  B  ->  y  e.  ( _V  X.  _V )
) )
134, 12bitr4i 185 . 2  |-  ( { y  |  E. x  e.  A  y  e.  B }  C_  ( _V 
X.  _V )  <->  A. x  e.  A  Rel  B )
142, 3, 133bitri 204 1  |-  ( Rel  U_ x  e.  A  B 
<-> 
A. x  e.  A  Rel  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1287    e. wcel 1438   {cab 2074   A.wral 2359   E.wrex 2360   _Vcvv 2619    C_ wss 2997   U_ciun 3725    X. cxp 4426   Rel wrel 4433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-in 3003  df-ss 3010  df-iun 3727  df-rel 4435
This theorem is referenced by:  reluni  4548  eliunxp  4563  opeliunxp2  4564  dfco2  4917  coiun  4927  opeliunxp2f  5985  fisumcom2  10795
  Copyright terms: Public domain W3C validator