ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reliun Unicode version

Theorem reliun 4749
Description: An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008.)
Assertion
Ref Expression
reliun  |-  ( Rel  U_ x  e.  A  B 
<-> 
A. x  e.  A  Rel  B )

Proof of Theorem reliun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-iun 3890 . . 3  |-  U_ x  e.  A  B  =  { y  |  E. x  e.  A  y  e.  B }
21releqi 4711 . 2  |-  ( Rel  U_ x  e.  A  B 
<->  Rel  { y  |  E. x  e.  A  y  e.  B }
)
3 df-rel 4635 . 2  |-  ( Rel 
{ y  |  E. x  e.  A  y  e.  B }  <->  { y  |  E. x  e.  A  y  e.  B }  C_  ( _V  X.  _V ) )
4 abss 3226 . . 3  |-  ( { y  |  E. x  e.  A  y  e.  B }  C_  ( _V 
X.  _V )  <->  A. y
( E. x  e.  A  y  e.  B  ->  y  e.  ( _V 
X.  _V ) ) )
5 df-rel 4635 . . . . . 6  |-  ( Rel 
B  <->  B  C_  ( _V 
X.  _V ) )
6 dfss2 3146 . . . . . 6  |-  ( B 
C_  ( _V  X.  _V )  <->  A. y ( y  e.  B  ->  y  e.  ( _V  X.  _V ) ) )
75, 6bitri 184 . . . . 5  |-  ( Rel 
B  <->  A. y ( y  e.  B  ->  y  e.  ( _V  X.  _V ) ) )
87ralbii 2483 . . . 4  |-  ( A. x  e.  A  Rel  B  <->  A. x  e.  A  A. y ( y  e.  B  ->  y  e.  ( _V  X.  _V )
) )
9 ralcom4 2761 . . . 4  |-  ( A. x  e.  A  A. y ( y  e.  B  ->  y  e.  ( _V  X.  _V )
)  <->  A. y A. x  e.  A  ( y  e.  B  ->  y  e.  ( _V  X.  _V ) ) )
10 r19.23v 2586 . . . . 5  |-  ( A. x  e.  A  (
y  e.  B  -> 
y  e.  ( _V 
X.  _V ) )  <->  ( E. x  e.  A  y  e.  B  ->  y  e.  ( _V  X.  _V ) ) )
1110albii 1470 . . . 4  |-  ( A. y A. x  e.  A  ( y  e.  B  ->  y  e.  ( _V 
X.  _V ) )  <->  A. y
( E. x  e.  A  y  e.  B  ->  y  e.  ( _V 
X.  _V ) ) )
128, 9, 113bitri 206 . . 3  |-  ( A. x  e.  A  Rel  B  <->  A. y ( E. x  e.  A  y  e.  B  ->  y  e.  ( _V  X.  _V )
) )
134, 12bitr4i 187 . 2  |-  ( { y  |  E. x  e.  A  y  e.  B }  C_  ( _V 
X.  _V )  <->  A. x  e.  A  Rel  B )
142, 3, 133bitri 206 1  |-  ( Rel  U_ x  e.  A  B 
<-> 
A. x  e.  A  Rel  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456   _Vcvv 2739    C_ wss 3131   U_ciun 3888    X. cxp 4626   Rel wrel 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-in 3137  df-ss 3144  df-iun 3890  df-rel 4635
This theorem is referenced by:  reluni  4751  eliunxp  4768  opeliunxp2  4769  dfco2  5130  coiun  5140  opeliunxp2f  6241  fisumcom2  11448  fprodcom2fi  11636  imasaddfnlemg  12740  reldvg  14233
  Copyright terms: Public domain W3C validator