| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difopab | Unicode version | ||
| Description: The difference of two ordered-pair abstractions. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| Ref | Expression |
|---|---|
| difopab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopab 4792 |
. . 3
| |
| 2 | reldif 4783 |
. . 3
| |
| 3 | 1, 2 | ax-mp 5 |
. 2
|
| 4 | relopab 4792 |
. 2
| |
| 5 | sbcan 3032 |
. . . 4
| |
| 6 | sbcan 3032 |
. . . . 5
| |
| 7 | 6 | sbcbii 3049 |
. . . 4
|
| 8 | opelopabsb 4294 |
. . . . 5
| |
| 9 | vex 2766 |
. . . . . . 7
| |
| 10 | sbcng 3030 |
. . . . . . 7
| |
| 11 | 9, 10 | ax-mp 5 |
. . . . . 6
|
| 12 | vex 2766 |
. . . . . . . 8
| |
| 13 | sbcng 3030 |
. . . . . . . 8
| |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . 7
|
| 15 | 14 | sbcbii 3049 |
. . . . . 6
|
| 16 | opelopabsb 4294 |
. . . . . . 7
| |
| 17 | 16 | notbii 669 |
. . . . . 6
|
| 18 | 11, 15, 17 | 3bitr4ri 213 |
. . . . 5
|
| 19 | 8, 18 | anbi12i 460 |
. . . 4
|
| 20 | 5, 7, 19 | 3bitr4ri 213 |
. . 3
|
| 21 | eldif 3166 |
. . 3
| |
| 22 | opelopabsb 4294 |
. . 3
| |
| 23 | 20, 21, 22 | 3bitr4i 212 |
. 2
|
| 24 | 3, 4, 23 | eqrelriiv 4757 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 df-xp 4669 df-rel 4670 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |