ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difopab Unicode version

Theorem difopab 4759
Description: The difference of two ordered-pair abstractions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
difopab  |-  ( {
<. x ,  y >.  |  ph }  \  { <. x ,  y >.  |  ps } )  =  { <. x ,  y
>.  |  ( ph  /\ 
-.  ps ) }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem difopab
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4752 . . 3  |-  Rel  { <. x ,  y >.  |  ph }
2 reldif 4745 . . 3  |-  ( Rel 
{ <. x ,  y
>.  |  ph }  ->  Rel  ( { <. x ,  y >.  |  ph }  \  { <. x ,  y >.  |  ps } ) )
31, 2ax-mp 5 . 2  |-  Rel  ( { <. x ,  y
>.  |  ph }  \  { <. x ,  y
>.  |  ps } )
4 relopab 4752 . 2  |-  Rel  { <. x ,  y >.  |  ( ph  /\  -.  ps ) }
5 sbcan 3005 . . . 4  |-  ( [. z  /  x ]. ( [. w  /  y ]. ph  /\  [. w  /  y ].  -.  ps )  <->  ( [. z  /  x ]. [. w  /  y ]. ph  /\  [. z  /  x ]. [. w  /  y ].  -.  ps ) )
6 sbcan 3005 . . . . 5  |-  ( [. w  /  y ]. ( ph  /\  -.  ps )  <->  (
[. w  /  y ]. ph  /\  [. w  /  y ].  -.  ps ) )
76sbcbii 3022 . . . 4  |-  ( [. z  /  x ]. [. w  /  y ]. ( ph  /\  -.  ps )  <->  [. z  /  x ]. ( [. w  /  y ]. ph  /\  [. w  /  y ].  -.  ps ) )
8 opelopabsb 4259 . . . . 5  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [. z  /  x ]. [. w  / 
y ]. ph )
9 vex 2740 . . . . . . 7  |-  z  e. 
_V
10 sbcng 3003 . . . . . . 7  |-  ( z  e.  _V  ->  ( [. z  /  x ].  -.  [. w  / 
y ]. ps  <->  -.  [. z  /  x ]. [. w  /  y ]. ps ) )
119, 10ax-mp 5 . . . . . 6  |-  ( [. z  /  x ].  -.  [. w  /  y ]. ps 
<->  -.  [. z  /  x ]. [. w  / 
y ]. ps )
12 vex 2740 . . . . . . . 8  |-  w  e. 
_V
13 sbcng 3003 . . . . . . . 8  |-  ( w  e.  _V  ->  ( [. w  /  y ].  -.  ps  <->  -.  [. w  /  y ]. ps ) )
1412, 13ax-mp 5 . . . . . . 7  |-  ( [. w  /  y ].  -.  ps 
<->  -.  [. w  / 
y ]. ps )
1514sbcbii 3022 . . . . . 6  |-  ( [. z  /  x ]. [. w  /  y ].  -.  ps 
<-> 
[. z  /  x ].  -.  [. w  / 
y ]. ps )
16 opelopabsb 4259 . . . . . . 7  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ps }  <->  [. z  /  x ]. [. w  / 
y ]. ps )
1716notbii 668 . . . . . 6  |-  ( -. 
<. z ,  w >.  e. 
{ <. x ,  y
>.  |  ps }  <->  -.  [. z  /  x ]. [. w  /  y ]. ps )
1811, 15, 173bitr4ri 213 . . . . 5  |-  ( -. 
<. z ,  w >.  e. 
{ <. x ,  y
>.  |  ps }  <->  [. z  /  x ]. [. w  / 
y ].  -.  ps )
198, 18anbi12i 460 . . . 4  |-  ( (
<. z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  /\  -.  <. z ,  w >.  e.  { <. x ,  y >.  |  ps } )  <->  ( [. z  /  x ]. [. w  /  y ]. ph  /\  [. z  /  x ]. [. w  /  y ].  -.  ps ) )
205, 7, 193bitr4ri 213 . . 3  |-  ( (
<. z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  /\  -.  <. z ,  w >.  e.  { <. x ,  y >.  |  ps } )  <->  [. z  /  x ]. [. w  / 
y ]. ( ph  /\  -.  ps ) )
21 eldif 3138 . . 3  |-  ( <.
z ,  w >.  e.  ( { <. x ,  y >.  |  ph }  \  { <. x ,  y >.  |  ps } )  <->  ( <. z ,  w >.  e.  { <. x ,  y >.  |  ph }  /\  -.  <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ps } ) )
22 opelopabsb 4259 . . 3  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ( ph  /\ 
-.  ps ) }  <->  [. z  /  x ]. [. w  / 
y ]. ( ph  /\  -.  ps ) )
2320, 21, 223bitr4i 212 . 2  |-  ( <.
z ,  w >.  e.  ( { <. x ,  y >.  |  ph }  \  { <. x ,  y >.  |  ps } )  <->  <. z ,  w >.  e.  { <. x ,  y >.  |  (
ph  /\  -.  ps ) } )
243, 4, 23eqrelriiv 4719 1  |-  ( {
<. x ,  y >.  |  ph }  \  { <. x ,  y >.  |  ps } )  =  { <. x ,  y
>.  |  ( ph  /\ 
-.  ps ) }
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   _Vcvv 2737   [.wsbc 2962    \ cdif 3126   <.cop 3595   {copab 4062   Rel wrel 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-opab 4064  df-xp 4631  df-rel 4632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator