| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reldif | GIF version | ||
| Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.) |
| Ref | Expression |
|---|---|
| reldif | ⊢ (Rel 𝐴 → Rel (𝐴 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 3300 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
| 2 | relss 4766 | . 2 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴 ∖ 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 → Rel (𝐴 ∖ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∖ cdif 3164 ⊆ wss 3167 Rel wrel 4684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3169 df-in 3173 df-ss 3180 df-rel 4686 |
| This theorem is referenced by: difopab 4815 fundif 5323 |
| Copyright terms: Public domain | W3C validator |