ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsng Unicode version

Theorem relsng 4743
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.) (Revised by BJ, 12-Feb-2022.)
Assertion
Ref Expression
relsng  |-  ( A  e.  V  ->  ( Rel  { A }  <->  A  e.  ( _V  X.  _V )
) )

Proof of Theorem relsng
StepHypRef Expression
1 df-rel 4647 . 2  |-  ( Rel 
{ A }  <->  { A }  C_  ( _V  X.  _V ) )
2 snssg 3740 . 2  |-  ( A  e.  V  ->  ( A  e.  ( _V  X.  _V )  <->  { A }  C_  ( _V  X.  _V ) ) )
31, 2bitr4id 199 1  |-  ( A  e.  V  ->  ( Rel  { A }  <->  A  e.  ( _V  X.  _V )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2159   _Vcvv 2751    C_ wss 3143   {csn 3606    X. cxp 4638   Rel wrel 4645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-v 2753  df-in 3149  df-ss 3156  df-sn 3612  df-rel 4647
This theorem is referenced by:  relsnopg  4744  setscom  12519  setsslid  12530
  Copyright terms: Public domain W3C validator