ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsng Unicode version

Theorem relsng 4762
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.) (Revised by BJ, 12-Feb-2022.)
Assertion
Ref Expression
relsng  |-  ( A  e.  V  ->  ( Rel  { A }  <->  A  e.  ( _V  X.  _V )
) )

Proof of Theorem relsng
StepHypRef Expression
1 df-rel 4666 . 2  |-  ( Rel 
{ A }  <->  { A }  C_  ( _V  X.  _V ) )
2 snssg 3752 . 2  |-  ( A  e.  V  ->  ( A  e.  ( _V  X.  _V )  <->  { A }  C_  ( _V  X.  _V ) ) )
31, 2bitr4id 199 1  |-  ( A  e.  V  ->  ( Rel  { A }  <->  A  e.  ( _V  X.  _V )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2164   _Vcvv 2760    C_ wss 3153   {csn 3618    X. cxp 4657   Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-sn 3624  df-rel 4666
This theorem is referenced by:  relsnopg  4763  setscom  12658  setsslid  12669
  Copyright terms: Public domain W3C validator