ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsng Unicode version

Theorem relsng 4730
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.) (Revised by BJ, 12-Feb-2022.)
Assertion
Ref Expression
relsng  |-  ( A  e.  V  ->  ( Rel  { A }  <->  A  e.  ( _V  X.  _V )
) )

Proof of Theorem relsng
StepHypRef Expression
1 df-rel 4634 . 2  |-  ( Rel 
{ A }  <->  { A }  C_  ( _V  X.  _V ) )
2 snssg 3727 . 2  |-  ( A  e.  V  ->  ( A  e.  ( _V  X.  _V )  <->  { A }  C_  ( _V  X.  _V ) ) )
31, 2bitr4id 199 1  |-  ( A  e.  V  ->  ( Rel  { A }  <->  A  e.  ( _V  X.  _V )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2148   _Vcvv 2738    C_ wss 3130   {csn 3593    X. cxp 4625   Rel wrel 4632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-in 3136  df-ss 3143  df-sn 3599  df-rel 4634
This theorem is referenced by:  relsnopg  4731  setscom  12502  setsslid  12513
  Copyright terms: Public domain W3C validator