ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsng Unicode version

Theorem relsng 4707
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.) (Revised by BJ, 12-Feb-2022.)
Assertion
Ref Expression
relsng  |-  ( A  e.  V  ->  ( Rel  { A }  <->  A  e.  ( _V  X.  _V )
) )

Proof of Theorem relsng
StepHypRef Expression
1 df-rel 4611 . 2  |-  ( Rel 
{ A }  <->  { A }  C_  ( _V  X.  _V ) )
2 snssg 3709 . 2  |-  ( A  e.  V  ->  ( A  e.  ( _V  X.  _V )  <->  { A }  C_  ( _V  X.  _V ) ) )
31, 2bitr4id 198 1  |-  ( A  e.  V  ->  ( Rel  { A }  <->  A  e.  ( _V  X.  _V )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2136   _Vcvv 2726    C_ wss 3116   {csn 3576    X. cxp 4602   Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-sn 3582  df-rel 4611
This theorem is referenced by:  relsnopg  4708  setscom  12434  setsslid  12444
  Copyright terms: Public domain W3C validator