| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > setscom | Unicode version | ||
| Description: Different components can be set in any order. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| setscom.1 | 
 | 
| setscom.2 | 
 | 
| Ref | Expression | 
|---|---|
| setscom | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rescom 4971 | 
. . . . . 6
 | |
| 2 | 1 | uneq1i 3313 | 
. . . . 5
 | 
| 3 | 2 | uneq1i 3313 | 
. . . 4
 | 
| 4 | un23 3322 | 
. . . 4
 | |
| 5 | 3, 4 | eqtri 2217 | 
. . 3
 | 
| 6 | setscom.1 | 
. . . . . . . 8
 | |
| 7 | setsvala 12709 | 
. . . . . . . 8
 | |
| 8 | 6, 7 | mp3an2 1336 | 
. . . . . . 7
 | 
| 9 | 8 | ad2ant2r 509 | 
. . . . . 6
 | 
| 10 | 9 | reseq1d 4945 | 
. . . . 5
 | 
| 11 | resundir 4960 | 
. . . . . 6
 | |
| 12 | elex 2774 | 
. . . . . . . . . . 11
 | |
| 13 | 12 | ad2antrl 490 | 
. . . . . . . . . 10
 | 
| 14 | opelxpi 4695 | 
. . . . . . . . . 10
 | |
| 15 | 6, 13, 14 | sylancr 414 | 
. . . . . . . . 9
 | 
| 16 | opexg 4261 | 
. . . . . . . . . . 11
 | |
| 17 | 6, 13, 16 | sylancr 414 | 
. . . . . . . . . 10
 | 
| 18 | relsng 4766 | 
. . . . . . . . . 10
 | |
| 19 | 17, 18 | syl 14 | 
. . . . . . . . 9
 | 
| 20 | 15, 19 | mpbird 167 | 
. . . . . . . 8
 | 
| 21 | dmsnopg 5141 | 
. . . . . . . . . 10
 | |
| 22 | 13, 21 | syl 14 | 
. . . . . . . . 9
 | 
| 23 | disjsn2 3685 | 
. . . . . . . . . . 11
 | |
| 24 | 23 | ad2antlr 489 | 
. . . . . . . . . 10
 | 
| 25 | disj2 3506 | 
. . . . . . . . . 10
 | |
| 26 | 24, 25 | sylib 122 | 
. . . . . . . . 9
 | 
| 27 | 22, 26 | eqsstrd 3219 | 
. . . . . . . 8
 | 
| 28 | relssres 4984 | 
. . . . . . . 8
 | |
| 29 | 20, 27, 28 | syl2anc 411 | 
. . . . . . 7
 | 
| 30 | 29 | uneq2d 3317 | 
. . . . . 6
 | 
| 31 | 11, 30 | eqtrid 2241 | 
. . . . 5
 | 
| 32 | 10, 31 | eqtrd 2229 | 
. . . 4
 | 
| 33 | 32 | uneq1d 3316 | 
. . 3
 | 
| 34 | setscom.2 | 
. . . . . . . 8
 | |
| 35 | setsvala 12709 | 
. . . . . . . 8
 | |
| 36 | 34, 35 | mp3an2 1336 | 
. . . . . . 7
 | 
| 37 | 36 | reseq1d 4945 | 
. . . . . 6
 | 
| 38 | 37 | ad2ant2rl 511 | 
. . . . 5
 | 
| 39 | resundir 4960 | 
. . . . . 6
 | |
| 40 | elex 2774 | 
. . . . . . . . . . 11
 | |
| 41 | 40 | ad2antll 491 | 
. . . . . . . . . 10
 | 
| 42 | opelxpi 4695 | 
. . . . . . . . . 10
 | |
| 43 | 34, 41, 42 | sylancr 414 | 
. . . . . . . . 9
 | 
| 44 | opexg 4261 | 
. . . . . . . . . . 11
 | |
| 45 | 34, 41, 44 | sylancr 414 | 
. . . . . . . . . 10
 | 
| 46 | relsng 4766 | 
. . . . . . . . . 10
 | |
| 47 | 45, 46 | syl 14 | 
. . . . . . . . 9
 | 
| 48 | 43, 47 | mpbird 167 | 
. . . . . . . 8
 | 
| 49 | dmsnopg 5141 | 
. . . . . . . . . 10
 | |
| 50 | 41, 49 | syl 14 | 
. . . . . . . . 9
 | 
| 51 | ssv 3205 | 
. . . . . . . . . . 11
 | |
| 52 | ssv 3205 | 
. . . . . . . . . . 11
 | |
| 53 | ssconb 3296 | 
. . . . . . . . . . 11
 | |
| 54 | 51, 52, 53 | mp2an 426 | 
. . . . . . . . . 10
 | 
| 55 | 26, 54 | sylib 122 | 
. . . . . . . . 9
 | 
| 56 | 50, 55 | eqsstrd 3219 | 
. . . . . . . 8
 | 
| 57 | relssres 4984 | 
. . . . . . . 8
 | |
| 58 | 48, 56, 57 | syl2anc 411 | 
. . . . . . 7
 | 
| 59 | 58 | uneq2d 3317 | 
. . . . . 6
 | 
| 60 | 39, 59 | eqtrid 2241 | 
. . . . 5
 | 
| 61 | 38, 60 | eqtrd 2229 | 
. . . 4
 | 
| 62 | 61 | uneq1d 3316 | 
. . 3
 | 
| 63 | 5, 33, 62 | 3eqtr4a 2255 | 
. 2
 | 
| 64 | setsex 12710 | 
. . . . 5
 | |
| 65 | 6, 64 | mp3an2 1336 | 
. . . 4
 | 
| 66 | 65 | ad2ant2r 509 | 
. . 3
 | 
| 67 | 34 | a1i 9 | 
. . 3
 | 
| 68 | simprr 531 | 
. . 3
 | |
| 69 | setsvala 12709 | 
. . 3
 | |
| 70 | 66, 67, 68, 69 | syl3anc 1249 | 
. 2
 | 
| 71 | setsex 12710 | 
. . . . 5
 | |
| 72 | 34, 71 | mp3an2 1336 | 
. . . 4
 | 
| 73 | 72 | ad2ant2rl 511 | 
. . 3
 | 
| 74 | 6 | a1i 9 | 
. . 3
 | 
| 75 | simprl 529 | 
. . 3
 | |
| 76 | setsvala 12709 | 
. . 3
 | |
| 77 | 73, 74, 75, 76 | syl3anc 1249 | 
. 2
 | 
| 78 | 63, 70, 77 | 3eqtr4d 2239 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sets 12685 | 
| This theorem is referenced by: setscomd 12719 | 
| Copyright terms: Public domain | W3C validator |