Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setscom | Unicode version |
Description: Component-setting is commutative when the x-values are different. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
setscom.1 | |
setscom.2 |
Ref | Expression |
---|---|
setscom | sSet sSet sSet sSet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescom 4916 | . . . . . 6 | |
2 | 1 | uneq1i 3277 | . . . . 5 |
3 | 2 | uneq1i 3277 | . . . 4 |
4 | un23 3286 | . . . 4 | |
5 | 3, 4 | eqtri 2191 | . . 3 |
6 | setscom.1 | . . . . . . . 8 | |
7 | setsvala 12447 | . . . . . . . 8 sSet | |
8 | 6, 7 | mp3an2 1320 | . . . . . . 7 sSet |
9 | 8 | ad2ant2r 506 | . . . . . 6 sSet |
10 | 9 | reseq1d 4890 | . . . . 5 sSet |
11 | resundir 4905 | . . . . . 6 | |
12 | elex 2741 | . . . . . . . . . . 11 | |
13 | 12 | ad2antrl 487 | . . . . . . . . . 10 |
14 | opelxpi 4643 | . . . . . . . . . 10 | |
15 | 6, 13, 14 | sylancr 412 | . . . . . . . . 9 |
16 | opexg 4213 | . . . . . . . . . . 11 | |
17 | 6, 13, 16 | sylancr 412 | . . . . . . . . . 10 |
18 | relsng 4714 | . . . . . . . . . 10 | |
19 | 17, 18 | syl 14 | . . . . . . . . 9 |
20 | 15, 19 | mpbird 166 | . . . . . . . 8 |
21 | dmsnopg 5082 | . . . . . . . . . 10 | |
22 | 13, 21 | syl 14 | . . . . . . . . 9 |
23 | disjsn2 3646 | . . . . . . . . . . 11 | |
24 | 23 | ad2antlr 486 | . . . . . . . . . 10 |
25 | disj2 3470 | . . . . . . . . . 10 | |
26 | 24, 25 | sylib 121 | . . . . . . . . 9 |
27 | 22, 26 | eqsstrd 3183 | . . . . . . . 8 |
28 | relssres 4929 | . . . . . . . 8 | |
29 | 20, 27, 28 | syl2anc 409 | . . . . . . 7 |
30 | 29 | uneq2d 3281 | . . . . . 6 |
31 | 11, 30 | eqtrid 2215 | . . . . 5 |
32 | 10, 31 | eqtrd 2203 | . . . 4 sSet |
33 | 32 | uneq1d 3280 | . . 3 sSet |
34 | setscom.2 | . . . . . . . 8 | |
35 | setsvala 12447 | . . . . . . . 8 sSet | |
36 | 34, 35 | mp3an2 1320 | . . . . . . 7 sSet |
37 | 36 | reseq1d 4890 | . . . . . 6 sSet |
38 | 37 | ad2ant2rl 508 | . . . . 5 sSet |
39 | resundir 4905 | . . . . . 6 | |
40 | elex 2741 | . . . . . . . . . . 11 | |
41 | 40 | ad2antll 488 | . . . . . . . . . 10 |
42 | opelxpi 4643 | . . . . . . . . . 10 | |
43 | 34, 41, 42 | sylancr 412 | . . . . . . . . 9 |
44 | opexg 4213 | . . . . . . . . . . 11 | |
45 | 34, 41, 44 | sylancr 412 | . . . . . . . . . 10 |
46 | relsng 4714 | . . . . . . . . . 10 | |
47 | 45, 46 | syl 14 | . . . . . . . . 9 |
48 | 43, 47 | mpbird 166 | . . . . . . . 8 |
49 | dmsnopg 5082 | . . . . . . . . . 10 | |
50 | 41, 49 | syl 14 | . . . . . . . . 9 |
51 | ssv 3169 | . . . . . . . . . . 11 | |
52 | ssv 3169 | . . . . . . . . . . 11 | |
53 | ssconb 3260 | . . . . . . . . . . 11 | |
54 | 51, 52, 53 | mp2an 424 | . . . . . . . . . 10 |
55 | 26, 54 | sylib 121 | . . . . . . . . 9 |
56 | 50, 55 | eqsstrd 3183 | . . . . . . . 8 |
57 | relssres 4929 | . . . . . . . 8 | |
58 | 48, 56, 57 | syl2anc 409 | . . . . . . 7 |
59 | 58 | uneq2d 3281 | . . . . . 6 |
60 | 39, 59 | eqtrid 2215 | . . . . 5 |
61 | 38, 60 | eqtrd 2203 | . . . 4 sSet |
62 | 61 | uneq1d 3280 | . . 3 sSet |
63 | 5, 33, 62 | 3eqtr4a 2229 | . 2 sSet sSet |
64 | setsex 12448 | . . . . 5 sSet | |
65 | 6, 64 | mp3an2 1320 | . . . 4 sSet |
66 | 65 | ad2ant2r 506 | . . 3 sSet |
67 | 34 | a1i 9 | . . 3 |
68 | simprr 527 | . . 3 | |
69 | setsvala 12447 | . . 3 sSet sSet sSet sSet | |
70 | 66, 67, 68, 69 | syl3anc 1233 | . 2 sSet sSet sSet |
71 | setsex 12448 | . . . . 5 sSet | |
72 | 34, 71 | mp3an2 1320 | . . . 4 sSet |
73 | 72 | ad2ant2rl 508 | . . 3 sSet |
74 | 6 | a1i 9 | . . 3 |
75 | simprl 526 | . . 3 | |
76 | setsvala 12447 | . . 3 sSet sSet sSet sSet | |
77 | 73, 74, 75, 76 | syl3anc 1233 | . 2 sSet sSet sSet |
78 | 63, 70, 77 | 3eqtr4d 2213 | 1 sSet sSet sSet sSet |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wne 2340 cvv 2730 cdif 3118 cun 3119 cin 3120 wss 3121 c0 3414 csn 3583 cop 3586 cxp 4609 cdm 4611 cres 4613 wrel 4616 (class class class)co 5853 sSet csts 12414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sets 12423 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |