| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setscom | Unicode version | ||
| Description: Different components can be set in any order. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| setscom.1 |
|
| setscom.2 |
|
| Ref | Expression |
|---|---|
| setscom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescom 4972 |
. . . . . 6
| |
| 2 | 1 | uneq1i 3314 |
. . . . 5
|
| 3 | 2 | uneq1i 3314 |
. . . 4
|
| 4 | un23 3323 |
. . . 4
| |
| 5 | 3, 4 | eqtri 2217 |
. . 3
|
| 6 | setscom.1 |
. . . . . . . 8
| |
| 7 | setsvala 12734 |
. . . . . . . 8
| |
| 8 | 6, 7 | mp3an2 1336 |
. . . . . . 7
|
| 9 | 8 | ad2ant2r 509 |
. . . . . 6
|
| 10 | 9 | reseq1d 4946 |
. . . . 5
|
| 11 | resundir 4961 |
. . . . . 6
| |
| 12 | elex 2774 |
. . . . . . . . . . 11
| |
| 13 | 12 | ad2antrl 490 |
. . . . . . . . . 10
|
| 14 | opelxpi 4696 |
. . . . . . . . . 10
| |
| 15 | 6, 13, 14 | sylancr 414 |
. . . . . . . . 9
|
| 16 | opexg 4262 |
. . . . . . . . . . 11
| |
| 17 | 6, 13, 16 | sylancr 414 |
. . . . . . . . . 10
|
| 18 | relsng 4767 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | syl 14 |
. . . . . . . . 9
|
| 20 | 15, 19 | mpbird 167 |
. . . . . . . 8
|
| 21 | dmsnopg 5142 |
. . . . . . . . . 10
| |
| 22 | 13, 21 | syl 14 |
. . . . . . . . 9
|
| 23 | disjsn2 3686 |
. . . . . . . . . . 11
| |
| 24 | 23 | ad2antlr 489 |
. . . . . . . . . 10
|
| 25 | disj2 3507 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | sylib 122 |
. . . . . . . . 9
|
| 27 | 22, 26 | eqsstrd 3220 |
. . . . . . . 8
|
| 28 | relssres 4985 |
. . . . . . . 8
| |
| 29 | 20, 27, 28 | syl2anc 411 |
. . . . . . 7
|
| 30 | 29 | uneq2d 3318 |
. . . . . 6
|
| 31 | 11, 30 | eqtrid 2241 |
. . . . 5
|
| 32 | 10, 31 | eqtrd 2229 |
. . . 4
|
| 33 | 32 | uneq1d 3317 |
. . 3
|
| 34 | setscom.2 |
. . . . . . . 8
| |
| 35 | setsvala 12734 |
. . . . . . . 8
| |
| 36 | 34, 35 | mp3an2 1336 |
. . . . . . 7
|
| 37 | 36 | reseq1d 4946 |
. . . . . 6
|
| 38 | 37 | ad2ant2rl 511 |
. . . . 5
|
| 39 | resundir 4961 |
. . . . . 6
| |
| 40 | elex 2774 |
. . . . . . . . . . 11
| |
| 41 | 40 | ad2antll 491 |
. . . . . . . . . 10
|
| 42 | opelxpi 4696 |
. . . . . . . . . 10
| |
| 43 | 34, 41, 42 | sylancr 414 |
. . . . . . . . 9
|
| 44 | opexg 4262 |
. . . . . . . . . . 11
| |
| 45 | 34, 41, 44 | sylancr 414 |
. . . . . . . . . 10
|
| 46 | relsng 4767 |
. . . . . . . . . 10
| |
| 47 | 45, 46 | syl 14 |
. . . . . . . . 9
|
| 48 | 43, 47 | mpbird 167 |
. . . . . . . 8
|
| 49 | dmsnopg 5142 |
. . . . . . . . . 10
| |
| 50 | 41, 49 | syl 14 |
. . . . . . . . 9
|
| 51 | ssv 3206 |
. . . . . . . . . . 11
| |
| 52 | ssv 3206 |
. . . . . . . . . . 11
| |
| 53 | ssconb 3297 |
. . . . . . . . . . 11
| |
| 54 | 51, 52, 53 | mp2an 426 |
. . . . . . . . . 10
|
| 55 | 26, 54 | sylib 122 |
. . . . . . . . 9
|
| 56 | 50, 55 | eqsstrd 3220 |
. . . . . . . 8
|
| 57 | relssres 4985 |
. . . . . . . 8
| |
| 58 | 48, 56, 57 | syl2anc 411 |
. . . . . . 7
|
| 59 | 58 | uneq2d 3318 |
. . . . . 6
|
| 60 | 39, 59 | eqtrid 2241 |
. . . . 5
|
| 61 | 38, 60 | eqtrd 2229 |
. . . 4
|
| 62 | 61 | uneq1d 3317 |
. . 3
|
| 63 | 5, 33, 62 | 3eqtr4a 2255 |
. 2
|
| 64 | setsex 12735 |
. . . . 5
| |
| 65 | 6, 64 | mp3an2 1336 |
. . . 4
|
| 66 | 65 | ad2ant2r 509 |
. . 3
|
| 67 | 34 | a1i 9 |
. . 3
|
| 68 | simprr 531 |
. . 3
| |
| 69 | setsvala 12734 |
. . 3
| |
| 70 | 66, 67, 68, 69 | syl3anc 1249 |
. 2
|
| 71 | setsex 12735 |
. . . . 5
| |
| 72 | 34, 71 | mp3an2 1336 |
. . . 4
|
| 73 | 72 | ad2ant2rl 511 |
. . 3
|
| 74 | 6 | a1i 9 |
. . 3
|
| 75 | simprl 529 |
. . 3
| |
| 76 | setsvala 12734 |
. . 3
| |
| 77 | 73, 74, 75, 76 | syl3anc 1249 |
. 2
|
| 78 | 63, 70, 77 | 3eqtr4d 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sets 12710 |
| This theorem is referenced by: setscomd 12744 |
| Copyright terms: Public domain | W3C validator |