Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setscom | Unicode version |
Description: Component-setting is commutative when the x-values are different. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
setscom.1 | |
setscom.2 |
Ref | Expression |
---|---|
setscom | sSet sSet sSet sSet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescom 4909 | . . . . . 6 | |
2 | 1 | uneq1i 3272 | . . . . 5 |
3 | 2 | uneq1i 3272 | . . . 4 |
4 | un23 3281 | . . . 4 | |
5 | 3, 4 | eqtri 2186 | . . 3 |
6 | setscom.1 | . . . . . . . 8 | |
7 | setsvala 12425 | . . . . . . . 8 sSet | |
8 | 6, 7 | mp3an2 1315 | . . . . . . 7 sSet |
9 | 8 | ad2ant2r 501 | . . . . . 6 sSet |
10 | 9 | reseq1d 4883 | . . . . 5 sSet |
11 | resundir 4898 | . . . . . 6 | |
12 | elex 2737 | . . . . . . . . . . 11 | |
13 | 12 | ad2antrl 482 | . . . . . . . . . 10 |
14 | opelxpi 4636 | . . . . . . . . . 10 | |
15 | 6, 13, 14 | sylancr 411 | . . . . . . . . 9 |
16 | opexg 4206 | . . . . . . . . . . 11 | |
17 | 6, 13, 16 | sylancr 411 | . . . . . . . . . 10 |
18 | relsng 4707 | . . . . . . . . . 10 | |
19 | 17, 18 | syl 14 | . . . . . . . . 9 |
20 | 15, 19 | mpbird 166 | . . . . . . . 8 |
21 | dmsnopg 5075 | . . . . . . . . . 10 | |
22 | 13, 21 | syl 14 | . . . . . . . . 9 |
23 | disjsn2 3639 | . . . . . . . . . . 11 | |
24 | 23 | ad2antlr 481 | . . . . . . . . . 10 |
25 | disj2 3464 | . . . . . . . . . 10 | |
26 | 24, 25 | sylib 121 | . . . . . . . . 9 |
27 | 22, 26 | eqsstrd 3178 | . . . . . . . 8 |
28 | relssres 4922 | . . . . . . . 8 | |
29 | 20, 27, 28 | syl2anc 409 | . . . . . . 7 |
30 | 29 | uneq2d 3276 | . . . . . 6 |
31 | 11, 30 | syl5eq 2211 | . . . . 5 |
32 | 10, 31 | eqtrd 2198 | . . . 4 sSet |
33 | 32 | uneq1d 3275 | . . 3 sSet |
34 | setscom.2 | . . . . . . . 8 | |
35 | setsvala 12425 | . . . . . . . 8 sSet | |
36 | 34, 35 | mp3an2 1315 | . . . . . . 7 sSet |
37 | 36 | reseq1d 4883 | . . . . . 6 sSet |
38 | 37 | ad2ant2rl 503 | . . . . 5 sSet |
39 | resundir 4898 | . . . . . 6 | |
40 | elex 2737 | . . . . . . . . . . 11 | |
41 | 40 | ad2antll 483 | . . . . . . . . . 10 |
42 | opelxpi 4636 | . . . . . . . . . 10 | |
43 | 34, 41, 42 | sylancr 411 | . . . . . . . . 9 |
44 | opexg 4206 | . . . . . . . . . . 11 | |
45 | 34, 41, 44 | sylancr 411 | . . . . . . . . . 10 |
46 | relsng 4707 | . . . . . . . . . 10 | |
47 | 45, 46 | syl 14 | . . . . . . . . 9 |
48 | 43, 47 | mpbird 166 | . . . . . . . 8 |
49 | dmsnopg 5075 | . . . . . . . . . 10 | |
50 | 41, 49 | syl 14 | . . . . . . . . 9 |
51 | ssv 3164 | . . . . . . . . . . 11 | |
52 | ssv 3164 | . . . . . . . . . . 11 | |
53 | ssconb 3255 | . . . . . . . . . . 11 | |
54 | 51, 52, 53 | mp2an 423 | . . . . . . . . . 10 |
55 | 26, 54 | sylib 121 | . . . . . . . . 9 |
56 | 50, 55 | eqsstrd 3178 | . . . . . . . 8 |
57 | relssres 4922 | . . . . . . . 8 | |
58 | 48, 56, 57 | syl2anc 409 | . . . . . . 7 |
59 | 58 | uneq2d 3276 | . . . . . 6 |
60 | 39, 59 | syl5eq 2211 | . . . . 5 |
61 | 38, 60 | eqtrd 2198 | . . . 4 sSet |
62 | 61 | uneq1d 3275 | . . 3 sSet |
63 | 5, 33, 62 | 3eqtr4a 2225 | . 2 sSet sSet |
64 | setsex 12426 | . . . . 5 sSet | |
65 | 6, 64 | mp3an2 1315 | . . . 4 sSet |
66 | 65 | ad2ant2r 501 | . . 3 sSet |
67 | 34 | a1i 9 | . . 3 |
68 | simprr 522 | . . 3 | |
69 | setsvala 12425 | . . 3 sSet sSet sSet sSet | |
70 | 66, 67, 68, 69 | syl3anc 1228 | . 2 sSet sSet sSet |
71 | setsex 12426 | . . . . 5 sSet | |
72 | 34, 71 | mp3an2 1315 | . . . 4 sSet |
73 | 72 | ad2ant2rl 503 | . . 3 sSet |
74 | 6 | a1i 9 | . . 3 |
75 | simprl 521 | . . 3 | |
76 | setsvala 12425 | . . 3 sSet sSet sSet sSet | |
77 | 73, 74, 75, 76 | syl3anc 1228 | . 2 sSet sSet sSet |
78 | 63, 70, 77 | 3eqtr4d 2208 | 1 sSet sSet sSet sSet |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wne 2336 cvv 2726 cdif 3113 cun 3114 cin 3115 wss 3116 c0 3409 csn 3576 cop 3579 cxp 4602 cdm 4604 cres 4606 wrel 4609 (class class class)co 5842 sSet csts 12392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sets 12401 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |