| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setscom | Unicode version | ||
| Description: Different components can be set in any order. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| setscom.1 |
|
| setscom.2 |
|
| Ref | Expression |
|---|---|
| setscom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescom 5030 |
. . . . . 6
| |
| 2 | 1 | uneq1i 3354 |
. . . . 5
|
| 3 | 2 | uneq1i 3354 |
. . . 4
|
| 4 | un23 3363 |
. . . 4
| |
| 5 | 3, 4 | eqtri 2250 |
. . 3
|
| 6 | setscom.1 |
. . . . . . . 8
| |
| 7 | setsvala 13063 |
. . . . . . . 8
| |
| 8 | 6, 7 | mp3an2 1359 |
. . . . . . 7
|
| 9 | 8 | ad2ant2r 509 |
. . . . . 6
|
| 10 | 9 | reseq1d 5004 |
. . . . 5
|
| 11 | resundir 5019 |
. . . . . 6
| |
| 12 | elex 2811 |
. . . . . . . . . . 11
| |
| 13 | 12 | ad2antrl 490 |
. . . . . . . . . 10
|
| 14 | opelxpi 4751 |
. . . . . . . . . 10
| |
| 15 | 6, 13, 14 | sylancr 414 |
. . . . . . . . 9
|
| 16 | opexg 4314 |
. . . . . . . . . . 11
| |
| 17 | 6, 13, 16 | sylancr 414 |
. . . . . . . . . 10
|
| 18 | relsng 4822 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | syl 14 |
. . . . . . . . 9
|
| 20 | 15, 19 | mpbird 167 |
. . . . . . . 8
|
| 21 | dmsnopg 5200 |
. . . . . . . . . 10
| |
| 22 | 13, 21 | syl 14 |
. . . . . . . . 9
|
| 23 | disjsn2 3729 |
. . . . . . . . . . 11
| |
| 24 | 23 | ad2antlr 489 |
. . . . . . . . . 10
|
| 25 | disj2 3547 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | sylib 122 |
. . . . . . . . 9
|
| 27 | 22, 26 | eqsstrd 3260 |
. . . . . . . 8
|
| 28 | relssres 5043 |
. . . . . . . 8
| |
| 29 | 20, 27, 28 | syl2anc 411 |
. . . . . . 7
|
| 30 | 29 | uneq2d 3358 |
. . . . . 6
|
| 31 | 11, 30 | eqtrid 2274 |
. . . . 5
|
| 32 | 10, 31 | eqtrd 2262 |
. . . 4
|
| 33 | 32 | uneq1d 3357 |
. . 3
|
| 34 | setscom.2 |
. . . . . . . 8
| |
| 35 | setsvala 13063 |
. . . . . . . 8
| |
| 36 | 34, 35 | mp3an2 1359 |
. . . . . . 7
|
| 37 | 36 | reseq1d 5004 |
. . . . . 6
|
| 38 | 37 | ad2ant2rl 511 |
. . . . 5
|
| 39 | resundir 5019 |
. . . . . 6
| |
| 40 | elex 2811 |
. . . . . . . . . . 11
| |
| 41 | 40 | ad2antll 491 |
. . . . . . . . . 10
|
| 42 | opelxpi 4751 |
. . . . . . . . . 10
| |
| 43 | 34, 41, 42 | sylancr 414 |
. . . . . . . . 9
|
| 44 | opexg 4314 |
. . . . . . . . . . 11
| |
| 45 | 34, 41, 44 | sylancr 414 |
. . . . . . . . . 10
|
| 46 | relsng 4822 |
. . . . . . . . . 10
| |
| 47 | 45, 46 | syl 14 |
. . . . . . . . 9
|
| 48 | 43, 47 | mpbird 167 |
. . . . . . . 8
|
| 49 | dmsnopg 5200 |
. . . . . . . . . 10
| |
| 50 | 41, 49 | syl 14 |
. . . . . . . . 9
|
| 51 | ssv 3246 |
. . . . . . . . . . 11
| |
| 52 | ssv 3246 |
. . . . . . . . . . 11
| |
| 53 | ssconb 3337 |
. . . . . . . . . . 11
| |
| 54 | 51, 52, 53 | mp2an 426 |
. . . . . . . . . 10
|
| 55 | 26, 54 | sylib 122 |
. . . . . . . . 9
|
| 56 | 50, 55 | eqsstrd 3260 |
. . . . . . . 8
|
| 57 | relssres 5043 |
. . . . . . . 8
| |
| 58 | 48, 56, 57 | syl2anc 411 |
. . . . . . 7
|
| 59 | 58 | uneq2d 3358 |
. . . . . 6
|
| 60 | 39, 59 | eqtrid 2274 |
. . . . 5
|
| 61 | 38, 60 | eqtrd 2262 |
. . . 4
|
| 62 | 61 | uneq1d 3357 |
. . 3
|
| 63 | 5, 33, 62 | 3eqtr4a 2288 |
. 2
|
| 64 | setsex 13064 |
. . . . 5
| |
| 65 | 6, 64 | mp3an2 1359 |
. . . 4
|
| 66 | 65 | ad2ant2r 509 |
. . 3
|
| 67 | 34 | a1i 9 |
. . 3
|
| 68 | simprr 531 |
. . 3
| |
| 69 | setsvala 13063 |
. . 3
| |
| 70 | 66, 67, 68, 69 | syl3anc 1271 |
. 2
|
| 71 | setsex 13064 |
. . . . 5
| |
| 72 | 34, 71 | mp3an2 1359 |
. . . 4
|
| 73 | 72 | ad2ant2rl 511 |
. . 3
|
| 74 | 6 | a1i 9 |
. . 3
|
| 75 | simprl 529 |
. . 3
| |
| 76 | setsvala 13063 |
. . 3
| |
| 77 | 73, 74, 75, 76 | syl3anc 1271 |
. 2
|
| 78 | 63, 70, 77 | 3eqtr4d 2272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sets 13039 |
| This theorem is referenced by: setscomd 13073 |
| Copyright terms: Public domain | W3C validator |