ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setscom Unicode version

Theorem setscom 12485
Description: Component-setting is commutative when the x-values are different. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
setscom.1  |-  A  e. 
_V
setscom.2  |-  B  e. 
_V
Assertion
Ref Expression
setscom  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )

Proof of Theorem setscom
StepHypRef Expression
1 rescom 4928 . . . . . 6  |-  ( ( S  |`  ( _V  \  { A } ) )  |`  ( _V  \  { B } ) )  =  ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )
21uneq1i 3285 . . . . 5  |-  ( ( ( S  |`  ( _V  \  { A }
) )  |`  ( _V  \  { B }
) )  u.  { <. A ,  C >. } )  =  ( ( ( S  |`  ( _V  \  { B }
) )  |`  ( _V  \  { A }
) )  u.  { <. A ,  C >. } )
32uneq1i 3285 . . . 4  |-  ( ( ( ( S  |`  ( _V  \  { A } ) )  |`  ( _V  \  { B } ) )  u. 
{ <. A ,  C >. } )  u.  { <. B ,  D >. } )  =  ( ( ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  C >. } )  u.  { <. B ,  D >. } )
4 un23 3294 . . . 4  |-  ( ( ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  C >. } )  u.  { <. B ,  D >. } )  =  ( ( ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )  u. 
{ <. B ,  D >. } )  u.  { <. A ,  C >. } )
53, 4eqtri 2198 . . 3  |-  ( ( ( ( S  |`  ( _V  \  { A } ) )  |`  ( _V  \  { B } ) )  u. 
{ <. A ,  C >. } )  u.  { <. B ,  D >. } )  =  ( ( ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )  u. 
{ <. B ,  D >. } )  u.  { <. A ,  C >. } )
6 setscom.1 . . . . . . . 8  |-  A  e. 
_V
7 setsvala 12476 . . . . . . . 8  |-  ( ( S  e.  V  /\  A  e.  _V  /\  C  e.  W )  ->  ( S sSet  <. A ,  C >. )  =  ( ( S  |`  ( _V  \  { A } ) )  u.  { <. A ,  C >. } ) )
86, 7mp3an2 1325 . . . . . . 7  |-  ( ( S  e.  V  /\  C  e.  W )  ->  ( S sSet  <. A ,  C >. )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  C >. } ) )
98ad2ant2r 509 . . . . . 6  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( S sSet  <. A ,  C >. )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  C >. } ) )
109reseq1d 4902 . . . . 5  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. A ,  C >. )  |`  ( _V  \  { B } ) )  =  ( ( ( S  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  C >. } )  |`  ( _V  \  { B }
) ) )
11 resundir 4917 . . . . . 6  |-  ( ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  C >. } )  |`  ( _V  \  { B } ) )  =  ( ( ( S  |`  ( _V  \  { A }
) )  |`  ( _V  \  { B }
) )  u.  ( { <. A ,  C >. }  |`  ( _V  \  { B } ) ) )
12 elex 2748 . . . . . . . . . . 11  |-  ( C  e.  W  ->  C  e.  _V )
1312ad2antrl 490 . . . . . . . . . 10  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  C  e.  _V )
14 opelxpi 4655 . . . . . . . . . 10  |-  ( ( A  e.  _V  /\  C  e.  _V )  -> 
<. A ,  C >.  e.  ( _V  X.  _V ) )
156, 13, 14sylancr 414 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  <. A ,  C >.  e.  ( _V  X.  _V ) )
16 opexg 4225 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  C  e.  _V )  -> 
<. A ,  C >.  e. 
_V )
176, 13, 16sylancr 414 . . . . . . . . . 10  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  <. A ,  C >.  e. 
_V )
18 relsng 4726 . . . . . . . . . 10  |-  ( <. A ,  C >.  e. 
_V  ->  ( Rel  { <. A ,  C >. }  <->  <. A ,  C >.  e.  ( _V  X.  _V ) ) )
1917, 18syl 14 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( Rel  { <. A ,  C >. }  <->  <. A ,  C >.  e.  ( _V 
X.  _V ) ) )
2015, 19mpbird 167 . . . . . . . 8  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  Rel  { <. A ,  C >. } )
21 dmsnopg 5096 . . . . . . . . . 10  |-  ( C  e.  _V  ->  dom  {
<. A ,  C >. }  =  { A }
)
2213, 21syl 14 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  dom  { <. A ,  C >. }  =  { A } )
23 disjsn2 3654 . . . . . . . . . . 11  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )
2423ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( { A }  i^i  { B } )  =  (/) )
25 disj2 3478 . . . . . . . . . 10  |-  ( ( { A }  i^i  { B } )  =  (/) 
<->  { A }  C_  ( _V  \  { B } ) )
2624, 25sylib 122 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  { A }  C_  ( _V  \  { B }
) )
2722, 26eqsstrd 3191 . . . . . . . 8  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  dom  { <. A ,  C >. }  C_  ( _V  \  { B } ) )
28 relssres 4941 . . . . . . . 8  |-  ( ( Rel  { <. A ,  C >. }  /\  dom  {
<. A ,  C >. } 
C_  ( _V  \  { B } ) )  ->  ( { <. A ,  C >. }  |`  ( _V  \  { B }
) )  =  { <. A ,  C >. } )
2920, 27, 28syl2anc 411 . . . . . . 7  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( { <. A ,  C >. }  |`  ( _V  \  { B }
) )  =  { <. A ,  C >. } )
3029uneq2d 3289 . . . . . 6  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( ( S  |`  ( _V  \  { A } ) )  |`  ( _V  \  { B } ) )  u.  ( { <. A ,  C >. }  |`  ( _V  \  { B }
) ) )  =  ( ( ( S  |`  ( _V  \  { A } ) )  |`  ( _V  \  { B } ) )  u. 
{ <. A ,  C >. } ) )
3111, 30eqtrid 2222 . . . . 5  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( ( S  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  C >. } )  |`  ( _V  \  { B }
) )  =  ( ( ( S  |`  ( _V  \  { A } ) )  |`  ( _V  \  { B } ) )  u. 
{ <. A ,  C >. } ) )
3210, 31eqtrd 2210 . . . 4  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. A ,  C >. )  |`  ( _V  \  { B } ) )  =  ( ( ( S  |`  ( _V  \  { A } ) )  |`  ( _V  \  { B } ) )  u. 
{ <. A ,  C >. } ) )
3332uneq1d 3288 . . 3  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( ( S sSet  <. A ,  C >. )  |`  ( _V  \  { B } ) )  u. 
{ <. B ,  D >. } )  =  ( ( ( ( S  |`  ( _V  \  { A } ) )  |`  ( _V  \  { B } ) )  u. 
{ <. A ,  C >. } )  u.  { <. B ,  D >. } ) )
34 setscom.2 . . . . . . . 8  |-  B  e. 
_V
35 setsvala 12476 . . . . . . . 8  |-  ( ( S  e.  V  /\  B  e.  _V  /\  D  e.  X )  ->  ( S sSet  <. B ,  D >. )  =  ( ( S  |`  ( _V  \  { B } ) )  u.  { <. B ,  D >. } ) )
3634, 35mp3an2 1325 . . . . . . 7  |-  ( ( S  e.  V  /\  D  e.  X )  ->  ( S sSet  <. B ,  D >. )  =  ( ( S  |`  ( _V  \  { B }
) )  u.  { <. B ,  D >. } ) )
3736reseq1d 4902 . . . . . 6  |-  ( ( S  e.  V  /\  D  e.  X )  ->  ( ( S sSet  <. B ,  D >. )  |`  ( _V  \  { A } ) )  =  ( ( ( S  |`  ( _V  \  { B } ) )  u. 
{ <. B ,  D >. } )  |`  ( _V  \  { A }
) ) )
3837ad2ant2rl 511 . . . . 5  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. B ,  D >. )  |`  ( _V  \  { A } ) )  =  ( ( ( S  |`  ( _V  \  { B } ) )  u. 
{ <. B ,  D >. } )  |`  ( _V  \  { A }
) ) )
39 resundir 4917 . . . . . 6  |-  ( ( ( S  |`  ( _V  \  { B }
) )  u.  { <. B ,  D >. } )  |`  ( _V  \  { A } ) )  =  ( ( ( S  |`  ( _V  \  { B }
) )  |`  ( _V  \  { A }
) )  u.  ( { <. B ,  D >. }  |`  ( _V  \  { A } ) ) )
40 elex 2748 . . . . . . . . . . 11  |-  ( D  e.  X  ->  D  e.  _V )
4140ad2antll 491 . . . . . . . . . 10  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  D  e.  _V )
42 opelxpi 4655 . . . . . . . . . 10  |-  ( ( B  e.  _V  /\  D  e.  _V )  -> 
<. B ,  D >.  e.  ( _V  X.  _V ) )
4334, 41, 42sylancr 414 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  <. B ,  D >.  e.  ( _V  X.  _V ) )
44 opexg 4225 . . . . . . . . . . 11  |-  ( ( B  e.  _V  /\  D  e.  _V )  -> 
<. B ,  D >.  e. 
_V )
4534, 41, 44sylancr 414 . . . . . . . . . 10  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  <. B ,  D >.  e. 
_V )
46 relsng 4726 . . . . . . . . . 10  |-  ( <. B ,  D >.  e. 
_V  ->  ( Rel  { <. B ,  D >. }  <->  <. B ,  D >.  e.  ( _V  X.  _V ) ) )
4745, 46syl 14 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( Rel  { <. B ,  D >. }  <->  <. B ,  D >.  e.  ( _V 
X.  _V ) ) )
4843, 47mpbird 167 . . . . . . . 8  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  Rel  { <. B ,  D >. } )
49 dmsnopg 5096 . . . . . . . . . 10  |-  ( D  e.  _V  ->  dom  {
<. B ,  D >. }  =  { B }
)
5041, 49syl 14 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  dom  { <. B ,  D >. }  =  { B } )
51 ssv 3177 . . . . . . . . . . 11  |-  { A }  C_  _V
52 ssv 3177 . . . . . . . . . . 11  |-  { B }  C_  _V
53 ssconb 3268 . . . . . . . . . . 11  |-  ( ( { A }  C_  _V  /\  { B }  C_ 
_V )  ->  ( { A }  C_  ( _V  \  { B }
)  <->  { B }  C_  ( _V  \  { A } ) ) )
5451, 52, 53mp2an 426 . . . . . . . . . 10  |-  ( { A }  C_  ( _V  \  { B }
)  <->  { B }  C_  ( _V  \  { A } ) )
5526, 54sylib 122 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  { B }  C_  ( _V  \  { A }
) )
5650, 55eqsstrd 3191 . . . . . . . 8  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  dom  { <. B ,  D >. }  C_  ( _V  \  { A } ) )
57 relssres 4941 . . . . . . . 8  |-  ( ( Rel  { <. B ,  D >. }  /\  dom  {
<. B ,  D >. } 
C_  ( _V  \  { A } ) )  ->  ( { <. B ,  D >. }  |`  ( _V  \  { A }
) )  =  { <. B ,  D >. } )
5848, 56, 57syl2anc 411 . . . . . . 7  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( { <. B ,  D >. }  |`  ( _V  \  { A }
) )  =  { <. B ,  D >. } )
5958uneq2d 3289 . . . . . 6  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )  u.  ( { <. B ,  D >. }  |`  ( _V  \  { A }
) ) )  =  ( ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )  u. 
{ <. B ,  D >. } ) )
6039, 59eqtrid 2222 . . . . 5  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( ( S  |`  ( _V  \  { B } ) )  u. 
{ <. B ,  D >. } )  |`  ( _V  \  { A }
) )  =  ( ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )  u. 
{ <. B ,  D >. } ) )
6138, 60eqtrd 2210 . . . 4  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. B ,  D >. )  |`  ( _V  \  { A } ) )  =  ( ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )  u. 
{ <. B ,  D >. } ) )
6261uneq1d 3288 . . 3  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( ( S sSet  <. B ,  D >. )  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  C >. } )  =  ( ( ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )  u. 
{ <. B ,  D >. } )  u.  { <. A ,  C >. } ) )
635, 33, 623eqtr4a 2236 . 2  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( ( S sSet  <. A ,  C >. )  |`  ( _V  \  { B } ) )  u. 
{ <. B ,  D >. } )  =  ( ( ( S sSet  <. B ,  D >. )  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  C >. } ) )
64 setsex 12477 . . . . 5  |-  ( ( S  e.  V  /\  A  e.  _V  /\  C  e.  W )  ->  ( S sSet  <. A ,  C >. )  e.  _V )
656, 64mp3an2 1325 . . . 4  |-  ( ( S  e.  V  /\  C  e.  W )  ->  ( S sSet  <. A ,  C >. )  e.  _V )
6665ad2ant2r 509 . . 3  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( S sSet  <. A ,  C >. )  e.  _V )
6734a1i 9 . . 3  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  B  e.  _V )
68 simprr 531 . . 3  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  D  e.  X )
69 setsvala 12476 . . 3  |-  ( ( ( S sSet  <. A ,  C >. )  e.  _V  /\  B  e.  _V  /\  D  e.  X )  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( ( S sSet  <. A ,  C >. )  |`  ( _V  \  { B } ) )  u.  { <. B ,  D >. } ) )
7066, 67, 68, 69syl3anc 1238 . 2  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( ( S sSet  <. A ,  C >. )  |`  ( _V  \  { B } ) )  u.  { <. B ,  D >. } ) )
71 setsex 12477 . . . . 5  |-  ( ( S  e.  V  /\  B  e.  _V  /\  D  e.  X )  ->  ( S sSet  <. B ,  D >. )  e.  _V )
7234, 71mp3an2 1325 . . . 4  |-  ( ( S  e.  V  /\  D  e.  X )  ->  ( S sSet  <. B ,  D >. )  e.  _V )
7372ad2ant2rl 511 . . 3  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( S sSet  <. B ,  D >. )  e.  _V )
746a1i 9 . . 3  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  A  e.  _V )
75 simprl 529 . . 3  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  C  e.  W )
76 setsvala 12476 . . 3  |-  ( ( ( S sSet  <. B ,  D >. )  e.  _V  /\  A  e.  _V  /\  C  e.  W )  ->  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. )  =  ( ( ( S sSet  <. B ,  D >. )  |`  ( _V  \  { A } ) )  u.  { <. A ,  C >. } ) )
7773, 74, 75, 76syl3anc 1238 . 2  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. )  =  ( ( ( S sSet  <. B ,  D >. )  |`  ( _V  \  { A } ) )  u.  { <. A ,  C >. } ) )
7863, 70, 773eqtr4d 2220 1  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    =/= wne 2347   _Vcvv 2737    \ cdif 3126    u. cun 3127    i^i cin 3128    C_ wss 3129   (/)c0 3422   {csn 3591   <.cop 3594    X. cxp 4621   dom cdm 4623    |` cres 4625   Rel wrel 4628  (class class class)co 5869   sSet csts 12443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-res 4635  df-iota 5174  df-fun 5214  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-sets 12452
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator