ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsslid Unicode version

Theorem setsslid 12495
Description: Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
Hypothesis
Ref Expression
setsslid.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
Assertion
Ref Expression
setsslid  |-  ( ( W  e.  A  /\  C  e.  V )  ->  C  =  ( E `
 ( W sSet  <. ( E `  ndx ) ,  C >. ) ) )

Proof of Theorem setsslid
StepHypRef Expression
1 setsslid.e . . . . 5  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
21simpri 113 . . . 4  |-  ( E `
 ndx )  e.  NN
3 setsvala 12476 . . . 4  |-  ( ( W  e.  A  /\  ( E `  ndx )  e.  NN  /\  C  e.  V )  ->  ( W sSet  <. ( E `  ndx ) ,  C >. )  =  ( ( W  |`  ( _V  \  {
( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } ) )
42, 3mp3an2 1325 . . 3  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( W sSet  <. ( E `  ndx ) ,  C >. )  =  ( ( W  |`  ( _V  \  { ( E `
 ndx ) } ) )  u.  { <. ( E `  ndx ) ,  C >. } ) )
54fveq2d 5515 . 2  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( E `  ( W sSet  <. ( E `  ndx ) ,  C >. ) )  =  ( E `
 ( ( W  |`  ( _V  \  {
( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } ) ) )
61simpli 111 . . 3  |-  E  = Slot  ( E `  ndx )
7 resexg 4943 . . . 4  |-  ( W  e.  A  ->  ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  e.  _V )
8 simpr 110 . . . . . 6  |-  ( ( W  e.  A  /\  C  e.  V )  ->  C  e.  V )
9 opexg 4225 . . . . . 6  |-  ( ( ( E `  ndx )  e.  NN  /\  C  e.  V )  ->  <. ( E `  ndx ) ,  C >.  e.  _V )
102, 8, 9sylancr 414 . . . . 5  |-  ( ( W  e.  A  /\  C  e.  V )  -> 
<. ( E `  ndx ) ,  C >.  e. 
_V )
11 snexg 4181 . . . . 5  |-  ( <.
( E `  ndx ) ,  C >.  e. 
_V  ->  { <. ( E `  ndx ) ,  C >. }  e.  _V )
1210, 11syl 14 . . . 4  |-  ( ( W  e.  A  /\  C  e.  V )  ->  { <. ( E `  ndx ) ,  C >. }  e.  _V )
13 unexg 4440 . . . 4  |-  ( ( ( W  |`  ( _V  \  { ( E `
 ndx ) } ) )  e.  _V  /\ 
{ <. ( E `  ndx ) ,  C >. }  e.  _V )  -> 
( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } )  e.  _V )
147, 12, 13syl2an2r 595 . . 3  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } )  e.  _V )
152a1i 9 . . 3  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( E `  ndx )  e.  NN )
166, 14, 15strnfvnd 12465 . 2  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( E `  (
( W  |`  ( _V  \  { ( E `
 ndx ) } ) )  u.  { <. ( E `  ndx ) ,  C >. } ) )  =  ( ( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } ) `  ( E `
 ndx ) ) )
17 snidg 3620 . . . . 5  |-  ( ( E `  ndx )  e.  NN  ->  ( E `  ndx )  e.  {
( E `  ndx ) } )
18 fvres 5535 . . . . 5  |-  ( ( E `  ndx )  e.  { ( E `  ndx ) }  ->  (
( ( ( W  |`  ( _V  \  {
( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } )  |`  { ( E `  ndx ) } ) `  ( E `
 ndx ) )  =  ( ( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  u.  { <. ( E `  ndx ) ,  C >. } ) `  ( E `  ndx )
) )
192, 17, 18mp2b 8 . . . 4  |-  ( ( ( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } )  |`  { ( E `  ndx ) } ) `  ( E `
 ndx ) )  =  ( ( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  u.  { <. ( E `  ndx ) ,  C >. } ) `  ( E `  ndx )
)
20 resres 4915 . . . . . . . . 9  |-  ( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  |`  { ( E `  ndx ) } )  =  ( W  |`  (
( _V  \  {
( E `  ndx ) } )  i^i  {
( E `  ndx ) } ) )
21 incom 3327 . . . . . . . . . . . 12  |-  ( ( _V  \  { ( E `  ndx ) } )  i^i  {
( E `  ndx ) } )  =  ( { ( E `  ndx ) }  i^i  ( _V  \  { ( E `
 ndx ) } ) )
22 disjdif 3495 . . . . . . . . . . . 12  |-  ( { ( E `  ndx ) }  i^i  ( _V  \  { ( E `
 ndx ) } ) )  =  (/)
2321, 22eqtri 2198 . . . . . . . . . . 11  |-  ( ( _V  \  { ( E `  ndx ) } )  i^i  {
( E `  ndx ) } )  =  (/)
2423reseq2i 4900 . . . . . . . . . 10  |-  ( W  |`  ( ( _V  \  { ( E `  ndx ) } )  i^i 
{ ( E `  ndx ) } ) )  =  ( W  |`  (/) )
25 res0 4907 . . . . . . . . . 10  |-  ( W  |`  (/) )  =  (/)
2624, 25eqtri 2198 . . . . . . . . 9  |-  ( W  |`  ( ( _V  \  { ( E `  ndx ) } )  i^i 
{ ( E `  ndx ) } ) )  =  (/)
2720, 26eqtri 2198 . . . . . . . 8  |-  ( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  |`  { ( E `  ndx ) } )  =  (/)
2827a1i 9 . . . . . . 7  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  |`  { ( E `  ndx ) } )  =  (/) )
292elexi 2749 . . . . . . . . . 10  |-  ( E `
 ndx )  e. 
_V
308elexd 2750 . . . . . . . . . 10  |-  ( ( W  e.  A  /\  C  e.  V )  ->  C  e.  _V )
31 opelxpi 4655 . . . . . . . . . 10  |-  ( ( ( E `  ndx )  e.  _V  /\  C  e.  _V )  ->  <. ( E `  ndx ) ,  C >.  e.  ( _V  X.  _V ) )
3229, 30, 31sylancr 414 . . . . . . . . 9  |-  ( ( W  e.  A  /\  C  e.  V )  -> 
<. ( E `  ndx ) ,  C >.  e.  ( _V  X.  _V ) )
33 relsng 4726 . . . . . . . . . 10  |-  ( <.
( E `  ndx ) ,  C >.  e. 
_V  ->  ( Rel  { <. ( E `  ndx ) ,  C >. }  <->  <. ( E `  ndx ) ,  C >.  e.  ( _V  X.  _V ) ) )
3410, 33syl 14 . . . . . . . . 9  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( Rel  { <. ( E `  ndx ) ,  C >. }  <->  <. ( E `
 ndx ) ,  C >.  e.  ( _V  X.  _V ) ) )
3532, 34mpbird 167 . . . . . . . 8  |-  ( ( W  e.  A  /\  C  e.  V )  ->  Rel  { <. ( E `  ndx ) ,  C >. } )
36 dmsnopg 5096 . . . . . . . . . 10  |-  ( C  e.  V  ->  dom  {
<. ( E `  ndx ) ,  C >. }  =  { ( E `
 ndx ) } )
3736adantl 277 . . . . . . . . 9  |-  ( ( W  e.  A  /\  C  e.  V )  ->  dom  { <. ( E `  ndx ) ,  C >. }  =  {
( E `  ndx ) } )
38 eqimss 3209 . . . . . . . . 9  |-  ( dom 
{ <. ( E `  ndx ) ,  C >. }  =  { ( E `
 ndx ) }  ->  dom  { <. ( E `  ndx ) ,  C >. }  C_  { ( E `  ndx ) } )
3937, 38syl 14 . . . . . . . 8  |-  ( ( W  e.  A  /\  C  e.  V )  ->  dom  { <. ( E `  ndx ) ,  C >. }  C_  { ( E `  ndx ) } )
40 relssres 4941 . . . . . . . 8  |-  ( ( Rel  { <. ( E `  ndx ) ,  C >. }  /\  dom  {
<. ( E `  ndx ) ,  C >. } 
C_  { ( E `
 ndx ) } )  ->  ( { <. ( E `  ndx ) ,  C >. }  |`  { ( E `  ndx ) } )  =  { <. ( E `  ndx ) ,  C >. } )
4135, 39, 40syl2anc 411 . . . . . . 7  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( { <. ( E `  ndx ) ,  C >. }  |`  { ( E `  ndx ) } )  =  { <. ( E `  ndx ) ,  C >. } )
4228, 41uneq12d 3290 . . . . . 6  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( ( W  |`  ( _V  \  {
( E `  ndx ) } ) )  |`  { ( E `  ndx ) } )  u.  ( { <. ( E `  ndx ) ,  C >. }  |`  { ( E `  ndx ) } ) )  =  ( (/)  u.  { <. ( E `  ndx ) ,  C >. } ) )
43 resundir 4917 . . . . . 6  |-  ( ( ( W  |`  ( _V  \  { ( E `
 ndx ) } ) )  u.  { <. ( E `  ndx ) ,  C >. } )  |`  { ( E `  ndx ) } )  =  ( ( ( W  |`  ( _V  \  { ( E `
 ndx ) } ) )  |`  { ( E `  ndx ) } )  u.  ( { <. ( E `  ndx ) ,  C >. }  |`  { ( E `  ndx ) } ) )
44 un0 3456 . . . . . . 7  |-  ( {
<. ( E `  ndx ) ,  C >. }  u.  (/) )  =  { <. ( E `  ndx ) ,  C >. }
45 uncom 3279 . . . . . . 7  |-  ( {
<. ( E `  ndx ) ,  C >. }  u.  (/) )  =  (
(/)  u.  { <. ( E `  ndx ) ,  C >. } )
4644, 45eqtr3i 2200 . . . . . 6  |-  { <. ( E `  ndx ) ,  C >. }  =  (
(/)  u.  { <. ( E `  ndx ) ,  C >. } )
4742, 43, 463eqtr4g 2235 . . . . 5  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( ( W  |`  ( _V  \  {
( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } )  |`  { ( E `  ndx ) } )  =  { <. ( E `  ndx ) ,  C >. } )
4847fveq1d 5513 . . . 4  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( ( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  u.  { <. ( E `  ndx ) ,  C >. } )  |`  { ( E `  ndx ) } ) `  ( E `  ndx )
)  =  ( {
<. ( E `  ndx ) ,  C >. } `
 ( E `  ndx ) ) )
4919, 48eqtr3id 2224 . . 3  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( ( W  |`  ( _V  \  {
( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } ) `  ( E `
 ndx ) )  =  ( { <. ( E `  ndx ) ,  C >. } `  ( E `  ndx ) ) )
50 fvsng 5708 . . . 4  |-  ( ( ( E `  ndx )  e.  NN  /\  C  e.  V )  ->  ( { <. ( E `  ndx ) ,  C >. } `
 ( E `  ndx ) )  =  C )
512, 8, 50sylancr 414 . . 3  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( { <. ( E `  ndx ) ,  C >. } `  ( E `  ndx ) )  =  C )
5249, 51eqtrd 2210 . 2  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( ( W  |`  ( _V  \  {
( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } ) `  ( E `
 ndx ) )  =  C )
535, 16, 523eqtrrd 2215 1  |-  ( ( W  e.  A  /\  C  e.  V )  ->  C  =  ( E `
 ( W sSet  <. ( E `  ndx ) ,  C >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   _Vcvv 2737    \ cdif 3126    u. cun 3127    i^i cin 3128    C_ wss 3129   (/)c0 3422   {csn 3591   <.cop 3594    X. cxp 4621   dom cdm 4623    |` cres 4625   Rel wrel 4628   ` cfv 5212  (class class class)co 5869   NNcn 8908   ndxcnx 12442   sSet csts 12443  Slot cslot 12444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-iota 5174  df-fun 5214  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-slot 12449  df-sets 12452
This theorem is referenced by:  ressbasd  12509  mgpplusgg  12961  opprmulfvalg  13067  setsmstsetg  13648
  Copyright terms: Public domain W3C validator