| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setsslid | Unicode version | ||
| Description: Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.) |
| Ref | Expression |
|---|---|
| setsslid.e |
|
| Ref | Expression |
|---|---|
| setsslid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsslid.e |
. . . . 5
| |
| 2 | 1 | simpri 113 |
. . . 4
|
| 3 | setsvala 13058 |
. . . 4
| |
| 4 | 2, 3 | mp3an2 1359 |
. . 3
|
| 5 | 4 | fveq2d 5630 |
. 2
|
| 6 | 1 | simpli 111 |
. . 3
|
| 7 | resexg 5044 |
. . . 4
| |
| 8 | simpr 110 |
. . . . . 6
| |
| 9 | opexg 4313 |
. . . . . 6
| |
| 10 | 2, 8, 9 | sylancr 414 |
. . . . 5
|
| 11 | snexg 4267 |
. . . . 5
| |
| 12 | 10, 11 | syl 14 |
. . . 4
|
| 13 | unexg 4533 |
. . . 4
| |
| 14 | 7, 12, 13 | syl2an2r 597 |
. . 3
|
| 15 | 2 | a1i 9 |
. . 3
|
| 16 | 6, 14, 15 | strnfvnd 13047 |
. 2
|
| 17 | snidg 3695 |
. . . . 5
| |
| 18 | fvres 5650 |
. . . . 5
| |
| 19 | 2, 17, 18 | mp2b 8 |
. . . 4
|
| 20 | resres 5016 |
. . . . . . . . 9
| |
| 21 | incom 3396 |
. . . . . . . . . . . 12
| |
| 22 | disjdif 3564 |
. . . . . . . . . . . 12
| |
| 23 | 21, 22 | eqtri 2250 |
. . . . . . . . . . 11
|
| 24 | 23 | reseq2i 5001 |
. . . . . . . . . 10
|
| 25 | res0 5008 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | eqtri 2250 |
. . . . . . . . 9
|
| 27 | 20, 26 | eqtri 2250 |
. . . . . . . 8
|
| 28 | 27 | a1i 9 |
. . . . . . 7
|
| 29 | 2 | elexi 2812 |
. . . . . . . . . 10
|
| 30 | 8 | elexd 2813 |
. . . . . . . . . 10
|
| 31 | opelxpi 4750 |
. . . . . . . . . 10
| |
| 32 | 29, 30, 31 | sylancr 414 |
. . . . . . . . 9
|
| 33 | relsng 4821 |
. . . . . . . . . 10
| |
| 34 | 10, 33 | syl 14 |
. . . . . . . . 9
|
| 35 | 32, 34 | mpbird 167 |
. . . . . . . 8
|
| 36 | dmsnopg 5199 |
. . . . . . . . . 10
| |
| 37 | 36 | adantl 277 |
. . . . . . . . 9
|
| 38 | eqimss 3278 |
. . . . . . . . 9
| |
| 39 | 37, 38 | syl 14 |
. . . . . . . 8
|
| 40 | relssres 5042 |
. . . . . . . 8
| |
| 41 | 35, 39, 40 | syl2anc 411 |
. . . . . . 7
|
| 42 | 28, 41 | uneq12d 3359 |
. . . . . 6
|
| 43 | resundir 5018 |
. . . . . 6
| |
| 44 | un0 3525 |
. . . . . . 7
| |
| 45 | uncom 3348 |
. . . . . . 7
| |
| 46 | 44, 45 | eqtr3i 2252 |
. . . . . 6
|
| 47 | 42, 43, 46 | 3eqtr4g 2287 |
. . . . 5
|
| 48 | 47 | fveq1d 5628 |
. . . 4
|
| 49 | 19, 48 | eqtr3id 2276 |
. . 3
|
| 50 | fvsng 5834 |
. . . 4
| |
| 51 | 2, 8, 50 | sylancr 414 |
. . 3
|
| 52 | 49, 51 | eqtrd 2262 |
. 2
|
| 53 | 5, 16, 52 | 3eqtrrd 2267 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-slot 13031 df-sets 13034 |
| This theorem is referenced by: ressbasd 13095 mgpplusgg 13882 opprmulfvalg 14028 rmodislmod 14309 srascag 14400 sravscag 14401 sraipg 14402 zlmsca 14590 zlmvscag 14591 znle 14595 setsmstsetg 15149 setsiedg 15847 |
| Copyright terms: Public domain | W3C validator |