| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setsslid | Unicode version | ||
| Description: Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.) |
| Ref | Expression |
|---|---|
| setsslid.e |
|
| Ref | Expression |
|---|---|
| setsslid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsslid.e |
. . . . 5
| |
| 2 | 1 | simpri 113 |
. . . 4
|
| 3 | setsvala 12938 |
. . . 4
| |
| 4 | 2, 3 | mp3an2 1338 |
. . 3
|
| 5 | 4 | fveq2d 5593 |
. 2
|
| 6 | 1 | simpli 111 |
. . 3
|
| 7 | resexg 5008 |
. . . 4
| |
| 8 | simpr 110 |
. . . . . 6
| |
| 9 | opexg 4280 |
. . . . . 6
| |
| 10 | 2, 8, 9 | sylancr 414 |
. . . . 5
|
| 11 | snexg 4236 |
. . . . 5
| |
| 12 | 10, 11 | syl 14 |
. . . 4
|
| 13 | unexg 4498 |
. . . 4
| |
| 14 | 7, 12, 13 | syl2an2r 595 |
. . 3
|
| 15 | 2 | a1i 9 |
. . 3
|
| 16 | 6, 14, 15 | strnfvnd 12927 |
. 2
|
| 17 | snidg 3667 |
. . . . 5
| |
| 18 | fvres 5613 |
. . . . 5
| |
| 19 | 2, 17, 18 | mp2b 8 |
. . . 4
|
| 20 | resres 4980 |
. . . . . . . . 9
| |
| 21 | incom 3369 |
. . . . . . . . . . . 12
| |
| 22 | disjdif 3537 |
. . . . . . . . . . . 12
| |
| 23 | 21, 22 | eqtri 2227 |
. . . . . . . . . . 11
|
| 24 | 23 | reseq2i 4965 |
. . . . . . . . . 10
|
| 25 | res0 4972 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | eqtri 2227 |
. . . . . . . . 9
|
| 27 | 20, 26 | eqtri 2227 |
. . . . . . . 8
|
| 28 | 27 | a1i 9 |
. . . . . . 7
|
| 29 | 2 | elexi 2786 |
. . . . . . . . . 10
|
| 30 | 8 | elexd 2787 |
. . . . . . . . . 10
|
| 31 | opelxpi 4715 |
. . . . . . . . . 10
| |
| 32 | 29, 30, 31 | sylancr 414 |
. . . . . . . . 9
|
| 33 | relsng 4786 |
. . . . . . . . . 10
| |
| 34 | 10, 33 | syl 14 |
. . . . . . . . 9
|
| 35 | 32, 34 | mpbird 167 |
. . . . . . . 8
|
| 36 | dmsnopg 5163 |
. . . . . . . . . 10
| |
| 37 | 36 | adantl 277 |
. . . . . . . . 9
|
| 38 | eqimss 3251 |
. . . . . . . . 9
| |
| 39 | 37, 38 | syl 14 |
. . . . . . . 8
|
| 40 | relssres 5006 |
. . . . . . . 8
| |
| 41 | 35, 39, 40 | syl2anc 411 |
. . . . . . 7
|
| 42 | 28, 41 | uneq12d 3332 |
. . . . . 6
|
| 43 | resundir 4982 |
. . . . . 6
| |
| 44 | un0 3498 |
. . . . . . 7
| |
| 45 | uncom 3321 |
. . . . . . 7
| |
| 46 | 44, 45 | eqtr3i 2229 |
. . . . . 6
|
| 47 | 42, 43, 46 | 3eqtr4g 2264 |
. . . . 5
|
| 48 | 47 | fveq1d 5591 |
. . . 4
|
| 49 | 19, 48 | eqtr3id 2253 |
. . 3
|
| 50 | fvsng 5793 |
. . . 4
| |
| 51 | 2, 8, 50 | sylancr 414 |
. . 3
|
| 52 | 49, 51 | eqtrd 2239 |
. 2
|
| 53 | 5, 16, 52 | 3eqtrrd 2244 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-slot 12911 df-sets 12914 |
| This theorem is referenced by: ressbasd 12974 mgpplusgg 13761 opprmulfvalg 13907 rmodislmod 14188 srascag 14279 sravscag 14280 sraipg 14281 zlmsca 14469 zlmvscag 14470 znle 14474 setsmstsetg 15028 |
| Copyright terms: Public domain | W3C validator |