ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsslid Unicode version

Theorem setsslid 12729
Description: Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
Hypothesis
Ref Expression
setsslid.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
Assertion
Ref Expression
setsslid  |-  ( ( W  e.  A  /\  C  e.  V )  ->  C  =  ( E `
 ( W sSet  <. ( E `  ndx ) ,  C >. ) ) )

Proof of Theorem setsslid
StepHypRef Expression
1 setsslid.e . . . . 5  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
21simpri 113 . . . 4  |-  ( E `
 ndx )  e.  NN
3 setsvala 12709 . . . 4  |-  ( ( W  e.  A  /\  ( E `  ndx )  e.  NN  /\  C  e.  V )  ->  ( W sSet  <. ( E `  ndx ) ,  C >. )  =  ( ( W  |`  ( _V  \  {
( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } ) )
42, 3mp3an2 1336 . . 3  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( W sSet  <. ( E `  ndx ) ,  C >. )  =  ( ( W  |`  ( _V  \  { ( E `
 ndx ) } ) )  u.  { <. ( E `  ndx ) ,  C >. } ) )
54fveq2d 5562 . 2  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( E `  ( W sSet  <. ( E `  ndx ) ,  C >. ) )  =  ( E `
 ( ( W  |`  ( _V  \  {
( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } ) ) )
61simpli 111 . . 3  |-  E  = Slot  ( E `  ndx )
7 resexg 4986 . . . 4  |-  ( W  e.  A  ->  ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  e.  _V )
8 simpr 110 . . . . . 6  |-  ( ( W  e.  A  /\  C  e.  V )  ->  C  e.  V )
9 opexg 4261 . . . . . 6  |-  ( ( ( E `  ndx )  e.  NN  /\  C  e.  V )  ->  <. ( E `  ndx ) ,  C >.  e.  _V )
102, 8, 9sylancr 414 . . . . 5  |-  ( ( W  e.  A  /\  C  e.  V )  -> 
<. ( E `  ndx ) ,  C >.  e. 
_V )
11 snexg 4217 . . . . 5  |-  ( <.
( E `  ndx ) ,  C >.  e. 
_V  ->  { <. ( E `  ndx ) ,  C >. }  e.  _V )
1210, 11syl 14 . . . 4  |-  ( ( W  e.  A  /\  C  e.  V )  ->  { <. ( E `  ndx ) ,  C >. }  e.  _V )
13 unexg 4478 . . . 4  |-  ( ( ( W  |`  ( _V  \  { ( E `
 ndx ) } ) )  e.  _V  /\ 
{ <. ( E `  ndx ) ,  C >. }  e.  _V )  -> 
( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } )  e.  _V )
147, 12, 13syl2an2r 595 . . 3  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } )  e.  _V )
152a1i 9 . . 3  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( E `  ndx )  e.  NN )
166, 14, 15strnfvnd 12698 . 2  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( E `  (
( W  |`  ( _V  \  { ( E `
 ndx ) } ) )  u.  { <. ( E `  ndx ) ,  C >. } ) )  =  ( ( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } ) `  ( E `
 ndx ) ) )
17 snidg 3651 . . . . 5  |-  ( ( E `  ndx )  e.  NN  ->  ( E `  ndx )  e.  {
( E `  ndx ) } )
18 fvres 5582 . . . . 5  |-  ( ( E `  ndx )  e.  { ( E `  ndx ) }  ->  (
( ( ( W  |`  ( _V  \  {
( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } )  |`  { ( E `  ndx ) } ) `  ( E `
 ndx ) )  =  ( ( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  u.  { <. ( E `  ndx ) ,  C >. } ) `  ( E `  ndx )
) )
192, 17, 18mp2b 8 . . . 4  |-  ( ( ( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } )  |`  { ( E `  ndx ) } ) `  ( E `
 ndx ) )  =  ( ( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  u.  { <. ( E `  ndx ) ,  C >. } ) `  ( E `  ndx )
)
20 resres 4958 . . . . . . . . 9  |-  ( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  |`  { ( E `  ndx ) } )  =  ( W  |`  (
( _V  \  {
( E `  ndx ) } )  i^i  {
( E `  ndx ) } ) )
21 incom 3355 . . . . . . . . . . . 12  |-  ( ( _V  \  { ( E `  ndx ) } )  i^i  {
( E `  ndx ) } )  =  ( { ( E `  ndx ) }  i^i  ( _V  \  { ( E `
 ndx ) } ) )
22 disjdif 3523 . . . . . . . . . . . 12  |-  ( { ( E `  ndx ) }  i^i  ( _V  \  { ( E `
 ndx ) } ) )  =  (/)
2321, 22eqtri 2217 . . . . . . . . . . 11  |-  ( ( _V  \  { ( E `  ndx ) } )  i^i  {
( E `  ndx ) } )  =  (/)
2423reseq2i 4943 . . . . . . . . . 10  |-  ( W  |`  ( ( _V  \  { ( E `  ndx ) } )  i^i 
{ ( E `  ndx ) } ) )  =  ( W  |`  (/) )
25 res0 4950 . . . . . . . . . 10  |-  ( W  |`  (/) )  =  (/)
2624, 25eqtri 2217 . . . . . . . . 9  |-  ( W  |`  ( ( _V  \  { ( E `  ndx ) } )  i^i 
{ ( E `  ndx ) } ) )  =  (/)
2720, 26eqtri 2217 . . . . . . . 8  |-  ( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  |`  { ( E `  ndx ) } )  =  (/)
2827a1i 9 . . . . . . 7  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  |`  { ( E `  ndx ) } )  =  (/) )
292elexi 2775 . . . . . . . . . 10  |-  ( E `
 ndx )  e. 
_V
308elexd 2776 . . . . . . . . . 10  |-  ( ( W  e.  A  /\  C  e.  V )  ->  C  e.  _V )
31 opelxpi 4695 . . . . . . . . . 10  |-  ( ( ( E `  ndx )  e.  _V  /\  C  e.  _V )  ->  <. ( E `  ndx ) ,  C >.  e.  ( _V  X.  _V ) )
3229, 30, 31sylancr 414 . . . . . . . . 9  |-  ( ( W  e.  A  /\  C  e.  V )  -> 
<. ( E `  ndx ) ,  C >.  e.  ( _V  X.  _V ) )
33 relsng 4766 . . . . . . . . . 10  |-  ( <.
( E `  ndx ) ,  C >.  e. 
_V  ->  ( Rel  { <. ( E `  ndx ) ,  C >. }  <->  <. ( E `  ndx ) ,  C >.  e.  ( _V  X.  _V ) ) )
3410, 33syl 14 . . . . . . . . 9  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( Rel  { <. ( E `  ndx ) ,  C >. }  <->  <. ( E `
 ndx ) ,  C >.  e.  ( _V  X.  _V ) ) )
3532, 34mpbird 167 . . . . . . . 8  |-  ( ( W  e.  A  /\  C  e.  V )  ->  Rel  { <. ( E `  ndx ) ,  C >. } )
36 dmsnopg 5141 . . . . . . . . . 10  |-  ( C  e.  V  ->  dom  {
<. ( E `  ndx ) ,  C >. }  =  { ( E `
 ndx ) } )
3736adantl 277 . . . . . . . . 9  |-  ( ( W  e.  A  /\  C  e.  V )  ->  dom  { <. ( E `  ndx ) ,  C >. }  =  {
( E `  ndx ) } )
38 eqimss 3237 . . . . . . . . 9  |-  ( dom 
{ <. ( E `  ndx ) ,  C >. }  =  { ( E `
 ndx ) }  ->  dom  { <. ( E `  ndx ) ,  C >. }  C_  { ( E `  ndx ) } )
3937, 38syl 14 . . . . . . . 8  |-  ( ( W  e.  A  /\  C  e.  V )  ->  dom  { <. ( E `  ndx ) ,  C >. }  C_  { ( E `  ndx ) } )
40 relssres 4984 . . . . . . . 8  |-  ( ( Rel  { <. ( E `  ndx ) ,  C >. }  /\  dom  {
<. ( E `  ndx ) ,  C >. } 
C_  { ( E `
 ndx ) } )  ->  ( { <. ( E `  ndx ) ,  C >. }  |`  { ( E `  ndx ) } )  =  { <. ( E `  ndx ) ,  C >. } )
4135, 39, 40syl2anc 411 . . . . . . 7  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( { <. ( E `  ndx ) ,  C >. }  |`  { ( E `  ndx ) } )  =  { <. ( E `  ndx ) ,  C >. } )
4228, 41uneq12d 3318 . . . . . 6  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( ( W  |`  ( _V  \  {
( E `  ndx ) } ) )  |`  { ( E `  ndx ) } )  u.  ( { <. ( E `  ndx ) ,  C >. }  |`  { ( E `  ndx ) } ) )  =  ( (/)  u.  { <. ( E `  ndx ) ,  C >. } ) )
43 resundir 4960 . . . . . 6  |-  ( ( ( W  |`  ( _V  \  { ( E `
 ndx ) } ) )  u.  { <. ( E `  ndx ) ,  C >. } )  |`  { ( E `  ndx ) } )  =  ( ( ( W  |`  ( _V  \  { ( E `
 ndx ) } ) )  |`  { ( E `  ndx ) } )  u.  ( { <. ( E `  ndx ) ,  C >. }  |`  { ( E `  ndx ) } ) )
44 un0 3484 . . . . . . 7  |-  ( {
<. ( E `  ndx ) ,  C >. }  u.  (/) )  =  { <. ( E `  ndx ) ,  C >. }
45 uncom 3307 . . . . . . 7  |-  ( {
<. ( E `  ndx ) ,  C >. }  u.  (/) )  =  (
(/)  u.  { <. ( E `  ndx ) ,  C >. } )
4644, 45eqtr3i 2219 . . . . . 6  |-  { <. ( E `  ndx ) ,  C >. }  =  (
(/)  u.  { <. ( E `  ndx ) ,  C >. } )
4742, 43, 463eqtr4g 2254 . . . . 5  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( ( W  |`  ( _V  \  {
( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } )  |`  { ( E `  ndx ) } )  =  { <. ( E `  ndx ) ,  C >. } )
4847fveq1d 5560 . . . 4  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( ( ( W  |`  ( _V  \  { ( E `  ndx ) } ) )  u.  { <. ( E `  ndx ) ,  C >. } )  |`  { ( E `  ndx ) } ) `  ( E `  ndx )
)  =  ( {
<. ( E `  ndx ) ,  C >. } `
 ( E `  ndx ) ) )
4919, 48eqtr3id 2243 . . 3  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( ( W  |`  ( _V  \  {
( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } ) `  ( E `
 ndx ) )  =  ( { <. ( E `  ndx ) ,  C >. } `  ( E `  ndx ) ) )
50 fvsng 5758 . . . 4  |-  ( ( ( E `  ndx )  e.  NN  /\  C  e.  V )  ->  ( { <. ( E `  ndx ) ,  C >. } `
 ( E `  ndx ) )  =  C )
512, 8, 50sylancr 414 . . 3  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( { <. ( E `  ndx ) ,  C >. } `  ( E `  ndx ) )  =  C )
5249, 51eqtrd 2229 . 2  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( ( W  |`  ( _V  \  {
( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  C >. } ) `  ( E `
 ndx ) )  =  C )
535, 16, 523eqtrrd 2234 1  |-  ( ( W  e.  A  /\  C  e.  V )  ->  C  =  ( E `
 ( W sSet  <. ( E `  ndx ) ,  C >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763    \ cdif 3154    u. cun 3155    i^i cin 3156    C_ wss 3157   (/)c0 3450   {csn 3622   <.cop 3625    X. cxp 4661   dom cdm 4663    |` cres 4665   Rel wrel 4668   ` cfv 5258  (class class class)co 5922   NNcn 8990   ndxcnx 12675   sSet csts 12676  Slot cslot 12677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-slot 12682  df-sets 12685
This theorem is referenced by:  ressbasd  12745  mgpplusgg  13480  opprmulfvalg  13626  rmodislmod  13907  srascag  13998  sravscag  13999  sraipg  14000  zlmsca  14188  zlmvscag  14189  znle  14193  setsmstsetg  14717
  Copyright terms: Public domain W3C validator