Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setsslid | Unicode version |
Description: Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.) |
Ref | Expression |
---|---|
setsslid.e | Slot |
Ref | Expression |
---|---|
setsslid | sSet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsslid.e | . . . . 5 Slot | |
2 | 1 | simpri 112 | . . . 4 |
3 | setsvala 12425 | . . . 4 sSet | |
4 | 2, 3 | mp3an2 1315 | . . 3 sSet |
5 | 4 | fveq2d 5490 | . 2 sSet |
6 | 1 | simpli 110 | . . 3 Slot |
7 | resexg 4924 | . . . 4 | |
8 | simpr 109 | . . . . . 6 | |
9 | opexg 4206 | . . . . . 6 | |
10 | 2, 8, 9 | sylancr 411 | . . . . 5 |
11 | snexg 4163 | . . . . 5 | |
12 | 10, 11 | syl 14 | . . . 4 |
13 | unexg 4421 | . . . 4 | |
14 | 7, 12, 13 | syl2an2r 585 | . . 3 |
15 | 2 | a1i 9 | . . 3 |
16 | 6, 14, 15 | strnfvnd 12414 | . 2 |
17 | snidg 3605 | . . . . 5 | |
18 | fvres 5510 | . . . . 5 | |
19 | 2, 17, 18 | mp2b 8 | . . . 4 |
20 | resres 4896 | . . . . . . . . 9 | |
21 | incom 3314 | . . . . . . . . . . . 12 | |
22 | disjdif 3481 | . . . . . . . . . . . 12 | |
23 | 21, 22 | eqtri 2186 | . . . . . . . . . . 11 |
24 | 23 | reseq2i 4881 | . . . . . . . . . 10 |
25 | res0 4888 | . . . . . . . . . 10 | |
26 | 24, 25 | eqtri 2186 | . . . . . . . . 9 |
27 | 20, 26 | eqtri 2186 | . . . . . . . 8 |
28 | 27 | a1i 9 | . . . . . . 7 |
29 | 2 | elexi 2738 | . . . . . . . . . 10 |
30 | 8 | elexd 2739 | . . . . . . . . . 10 |
31 | opelxpi 4636 | . . . . . . . . . 10 | |
32 | 29, 30, 31 | sylancr 411 | . . . . . . . . 9 |
33 | relsng 4707 | . . . . . . . . . 10 | |
34 | 10, 33 | syl 14 | . . . . . . . . 9 |
35 | 32, 34 | mpbird 166 | . . . . . . . 8 |
36 | dmsnopg 5075 | . . . . . . . . . 10 | |
37 | 36 | adantl 275 | . . . . . . . . 9 |
38 | eqimss 3196 | . . . . . . . . 9 | |
39 | 37, 38 | syl 14 | . . . . . . . 8 |
40 | relssres 4922 | . . . . . . . 8 | |
41 | 35, 39, 40 | syl2anc 409 | . . . . . . 7 |
42 | 28, 41 | uneq12d 3277 | . . . . . 6 |
43 | resundir 4898 | . . . . . 6 | |
44 | un0 3442 | . . . . . . 7 | |
45 | uncom 3266 | . . . . . . 7 | |
46 | 44, 45 | eqtr3i 2188 | . . . . . 6 |
47 | 42, 43, 46 | 3eqtr4g 2224 | . . . . 5 |
48 | 47 | fveq1d 5488 | . . . 4 |
49 | 19, 48 | eqtr3id 2213 | . . 3 |
50 | fvsng 5681 | . . . 4 | |
51 | 2, 8, 50 | sylancr 411 | . . 3 |
52 | 49, 51 | eqtrd 2198 | . 2 |
53 | 5, 16, 52 | 3eqtrrd 2203 | 1 sSet |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cvv 2726 cdif 3113 cun 3114 cin 3115 wss 3116 c0 3409 csn 3576 cop 3579 cxp 4602 cdm 4604 cres 4606 wrel 4609 cfv 5188 (class class class)co 5842 cn 8857 cnx 12391 sSet csts 12392 Slot cslot 12393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-slot 12398 df-sets 12401 |
This theorem is referenced by: setsmstsetg 13121 |
Copyright terms: Public domain | W3C validator |