| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setsslid | Unicode version | ||
| Description: Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.) |
| Ref | Expression |
|---|---|
| setsslid.e |
|
| Ref | Expression |
|---|---|
| setsslid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsslid.e |
. . . . 5
| |
| 2 | 1 | simpri 113 |
. . . 4
|
| 3 | setsvala 12709 |
. . . 4
| |
| 4 | 2, 3 | mp3an2 1336 |
. . 3
|
| 5 | 4 | fveq2d 5562 |
. 2
|
| 6 | 1 | simpli 111 |
. . 3
|
| 7 | resexg 4986 |
. . . 4
| |
| 8 | simpr 110 |
. . . . . 6
| |
| 9 | opexg 4261 |
. . . . . 6
| |
| 10 | 2, 8, 9 | sylancr 414 |
. . . . 5
|
| 11 | snexg 4217 |
. . . . 5
| |
| 12 | 10, 11 | syl 14 |
. . . 4
|
| 13 | unexg 4478 |
. . . 4
| |
| 14 | 7, 12, 13 | syl2an2r 595 |
. . 3
|
| 15 | 2 | a1i 9 |
. . 3
|
| 16 | 6, 14, 15 | strnfvnd 12698 |
. 2
|
| 17 | snidg 3651 |
. . . . 5
| |
| 18 | fvres 5582 |
. . . . 5
| |
| 19 | 2, 17, 18 | mp2b 8 |
. . . 4
|
| 20 | resres 4958 |
. . . . . . . . 9
| |
| 21 | incom 3355 |
. . . . . . . . . . . 12
| |
| 22 | disjdif 3523 |
. . . . . . . . . . . 12
| |
| 23 | 21, 22 | eqtri 2217 |
. . . . . . . . . . 11
|
| 24 | 23 | reseq2i 4943 |
. . . . . . . . . 10
|
| 25 | res0 4950 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | eqtri 2217 |
. . . . . . . . 9
|
| 27 | 20, 26 | eqtri 2217 |
. . . . . . . 8
|
| 28 | 27 | a1i 9 |
. . . . . . 7
|
| 29 | 2 | elexi 2775 |
. . . . . . . . . 10
|
| 30 | 8 | elexd 2776 |
. . . . . . . . . 10
|
| 31 | opelxpi 4695 |
. . . . . . . . . 10
| |
| 32 | 29, 30, 31 | sylancr 414 |
. . . . . . . . 9
|
| 33 | relsng 4766 |
. . . . . . . . . 10
| |
| 34 | 10, 33 | syl 14 |
. . . . . . . . 9
|
| 35 | 32, 34 | mpbird 167 |
. . . . . . . 8
|
| 36 | dmsnopg 5141 |
. . . . . . . . . 10
| |
| 37 | 36 | adantl 277 |
. . . . . . . . 9
|
| 38 | eqimss 3237 |
. . . . . . . . 9
| |
| 39 | 37, 38 | syl 14 |
. . . . . . . 8
|
| 40 | relssres 4984 |
. . . . . . . 8
| |
| 41 | 35, 39, 40 | syl2anc 411 |
. . . . . . 7
|
| 42 | 28, 41 | uneq12d 3318 |
. . . . . 6
|
| 43 | resundir 4960 |
. . . . . 6
| |
| 44 | un0 3484 |
. . . . . . 7
| |
| 45 | uncom 3307 |
. . . . . . 7
| |
| 46 | 44, 45 | eqtr3i 2219 |
. . . . . 6
|
| 47 | 42, 43, 46 | 3eqtr4g 2254 |
. . . . 5
|
| 48 | 47 | fveq1d 5560 |
. . . 4
|
| 49 | 19, 48 | eqtr3id 2243 |
. . 3
|
| 50 | fvsng 5758 |
. . . 4
| |
| 51 | 2, 8, 50 | sylancr 414 |
. . 3
|
| 52 | 49, 51 | eqtrd 2229 |
. 2
|
| 53 | 5, 16, 52 | 3eqtrrd 2234 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-slot 12682 df-sets 12685 |
| This theorem is referenced by: ressbasd 12745 mgpplusgg 13480 opprmulfvalg 13626 rmodislmod 13907 srascag 13998 sravscag 13999 sraipg 14000 zlmsca 14188 zlmvscag 14189 znle 14193 setsmstsetg 14717 |
| Copyright terms: Public domain | W3C validator |