| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relsng | GIF version | ||
| Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.) (Revised by BJ, 12-Feb-2022.) |
| Ref | Expression |
|---|---|
| relsng | ⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 4682 | . 2 ⊢ (Rel {𝐴} ↔ {𝐴} ⊆ (V × V)) | |
| 2 | snssg 3767 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (V × V) ↔ {𝐴} ⊆ (V × V))) | |
| 3 | 1, 2 | bitr4id 199 | 1 ⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2176 Vcvv 2772 ⊆ wss 3166 {csn 3633 × cxp 4673 Rel wrel 4680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-sn 3639 df-rel 4682 |
| This theorem is referenced by: relsnopg 4779 setscom 12872 setsslid 12883 |
| Copyright terms: Public domain | W3C validator |