ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsng GIF version

Theorem relsng 4731
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.) (Revised by BJ, 12-Feb-2022.)
Assertion
Ref Expression
relsng (𝐴𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V)))

Proof of Theorem relsng
StepHypRef Expression
1 df-rel 4635 . 2 (Rel {𝐴} ↔ {𝐴} ⊆ (V × V))
2 snssg 3728 . 2 (𝐴𝑉 → (𝐴 ∈ (V × V) ↔ {𝐴} ⊆ (V × V)))
31, 2bitr4id 199 1 (𝐴𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2148  Vcvv 2739  wss 3131  {csn 3594   × cxp 4626  Rel wrel 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144  df-sn 3600  df-rel 4635
This theorem is referenced by:  relsnopg  4732  setscom  12504  setsslid  12515
  Copyright terms: Public domain W3C validator