Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relsng | GIF version |
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.) (Revised by BJ, 12-Feb-2022.) |
Ref | Expression |
---|---|
relsng | ⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 4592 | . 2 ⊢ (Rel {𝐴} ↔ {𝐴} ⊆ (V × V)) | |
2 | snssg 3692 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (V × V) ↔ {𝐴} ⊆ (V × V))) | |
3 | 1, 2 | bitr4id 198 | 1 ⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 2128 Vcvv 2712 ⊆ wss 3102 {csn 3560 × cxp 4583 Rel wrel 4590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-in 3108 df-ss 3115 df-sn 3566 df-rel 4592 |
This theorem is referenced by: relsnopg 4689 setscom 12201 setsslid 12211 |
Copyright terms: Public domain | W3C validator |