ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsng GIF version

Theorem relsng 4778
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.) (Revised by BJ, 12-Feb-2022.)
Assertion
Ref Expression
relsng (𝐴𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V)))

Proof of Theorem relsng
StepHypRef Expression
1 df-rel 4682 . 2 (Rel {𝐴} ↔ {𝐴} ⊆ (V × V))
2 snssg 3767 . 2 (𝐴𝑉 → (𝐴 ∈ (V × V) ↔ {𝐴} ⊆ (V × V)))
31, 2bitr4id 199 1 (𝐴𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2176  Vcvv 2772  wss 3166  {csn 3633   × cxp 4673  Rel wrel 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-sn 3639  df-rel 4682
This theorem is referenced by:  relsnopg  4779  setscom  12872  setsslid  12883
  Copyright terms: Public domain W3C validator