ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsng GIF version

Theorem relsng 4714
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.) (Revised by BJ, 12-Feb-2022.)
Assertion
Ref Expression
relsng (𝐴𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V)))

Proof of Theorem relsng
StepHypRef Expression
1 df-rel 4618 . 2 (Rel {𝐴} ↔ {𝐴} ⊆ (V × V))
2 snssg 3716 . 2 (𝐴𝑉 → (𝐴 ∈ (V × V) ↔ {𝐴} ⊆ (V × V)))
31, 2bitr4id 198 1 (𝐴𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 2141  Vcvv 2730  wss 3121  {csn 3583   × cxp 4609  Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-sn 3589  df-rel 4618
This theorem is referenced by:  relsnopg  4715  setscom  12456  setsslid  12466
  Copyright terms: Public domain W3C validator