ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrel Unicode version

Theorem elrel 4579
Description: A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
elrel  |-  ( ( Rel  R  /\  A  e.  R )  ->  E. x E. y  A  =  <. x ,  y >.
)
Distinct variable group:    x, y, A
Allowed substitution hints:    R( x, y)

Proof of Theorem elrel
StepHypRef Expression
1 df-rel 4484 . . . 4  |-  ( Rel 
R  <->  R  C_  ( _V 
X.  _V ) )
21biimpi 119 . . 3  |-  ( Rel 
R  ->  R  C_  ( _V  X.  _V ) )
32sselda 3047 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  A  e.  ( _V  X.  _V ) )
4 elvv 4539 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
53, 4sylib 121 1  |-  ( ( Rel  R  /\  A  e.  R )  ->  E. x E. y  A  =  <. x ,  y >.
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1299   E.wex 1436    e. wcel 1448   _Vcvv 2641    C_ wss 3021   <.cop 3477    X. cxp 4475   Rel wrel 4482
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-opab 3930  df-xp 4483  df-rel 4484
This theorem is referenced by:  eliunxp  4616  elres  4791  unielrel  5002  rntpos  6084
  Copyright terms: Public domain W3C validator