ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrel Unicode version

Theorem elrel 4765
Description: A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
elrel  |-  ( ( Rel  R  /\  A  e.  R )  ->  E. x E. y  A  =  <. x ,  y >.
)
Distinct variable group:    x, y, A
Allowed substitution hints:    R( x, y)

Proof of Theorem elrel
StepHypRef Expression
1 df-rel 4670 . . . 4  |-  ( Rel 
R  <->  R  C_  ( _V 
X.  _V ) )
21biimpi 120 . . 3  |-  ( Rel 
R  ->  R  C_  ( _V  X.  _V ) )
32sselda 3183 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  A  e.  ( _V  X.  _V ) )
4 elvv 4725 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
53, 4sylib 122 1  |-  ( ( Rel  R  /\  A  e.  R )  ->  E. x E. y  A  =  <. x ,  y >.
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763    C_ wss 3157   <.cop 3625    X. cxp 4661   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095  df-xp 4669  df-rel 4670
This theorem is referenced by:  eliunxp  4805  elres  4982  unielrel  5197  rntpos  6315
  Copyright terms: Public domain W3C validator