| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssg | Unicode version | ||
| Description: The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snssg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssb 3766 |
. . 3
| |
| 2 | 1 | bicomi 132 |
. 2
|
| 3 | elex 2783 |
. 2
| |
| 4 | imbibi 252 |
. 2
| |
| 5 | 2, 3, 4 | mpsyl 65 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-sn 3639 |
| This theorem is referenced by: snss 3768 snssi 3777 snssd 3778 prssg 3790 ordtri2orexmid 4571 ordtri2or2exmid 4619 ontri2orexmidim 4620 relsng 4778 fvimacnvi 5694 fvimacnv 5695 tpfidceq 7027 strslfv 12877 strslfv3 12878 imasaddfnlemg 13146 imasaddvallemg 13147 lspsnid 14169 psrplusgg 14440 isneip 14618 elnei 14624 iscnp4 14690 cnpnei 14691 |
| Copyright terms: Public domain | W3C validator |