ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snssg Unicode version

Theorem snssg 3752
Description: The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.)
Assertion
Ref Expression
snssg  |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  C_  B ) )

Proof of Theorem snssg
StepHypRef Expression
1 snssb 3751 . . 3  |-  ( { A }  C_  B  <->  ( A  e.  _V  ->  A  e.  B ) )
21bicomi 132 . 2  |-  ( ( A  e.  _V  ->  A  e.  B )  <->  { A }  C_  B )
3 elex 2771 . 2  |-  ( A  e.  V  ->  A  e.  _V )
4 imbibi 252 . 2  |-  ( ( ( A  e.  _V  ->  A  e.  B )  <->  { A }  C_  B
)  ->  ( A  e.  _V  ->  ( A  e.  B  <->  { A }  C_  B ) ) )
52, 3, 4mpsyl 65 1  |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2164   _Vcvv 2760    C_ wss 3153   {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-sn 3624
This theorem is referenced by:  snss  3753  snssi  3762  snssd  3763  prssg  3775  ordtri2orexmid  4555  ordtri2or2exmid  4603  ontri2orexmidim  4604  relsng  4762  fvimacnvi  5672  fvimacnv  5673  strslfv  12663  imasaddfnlemg  12897  imasaddvallemg  12898  lspsnid  13903  psrplusgg  14162  isneip  14314  elnei  14320  iscnp4  14386  cnpnei  14387
  Copyright terms: Public domain W3C validator