| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssg | Unicode version | ||
| Description: The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snssg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssb 3800 |
. . 3
| |
| 2 | 1 | bicomi 132 |
. 2
|
| 3 | elex 2811 |
. 2
| |
| 4 | imbibi 252 |
. 2
| |
| 5 | 2, 3, 4 | mpsyl 65 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-sn 3672 |
| This theorem is referenced by: snss 3802 snssi 3811 snssd 3812 prssg 3824 snelpwg 4295 ordtri2orexmid 4614 ordtri2or2exmid 4662 ontri2orexmidim 4663 relsng 4821 fvimacnvi 5748 fvimacnv 5749 tpfidceq 7088 strslfv 13072 strslfv3 13073 imasaddfnlemg 13342 imasaddvallemg 13343 lspsnid 14365 psrplusgg 14636 isneip 14814 elnei 14820 iscnp4 14886 cnpnei 14887 lpvtx 15873 |
| Copyright terms: Public domain | W3C validator |