| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssg | Unicode version | ||
| Description: The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snssg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssb 3765 |
. . 3
| |
| 2 | 1 | bicomi 132 |
. 2
|
| 3 | elex 2782 |
. 2
| |
| 4 | imbibi 252 |
. 2
| |
| 5 | 2, 3, 4 | mpsyl 65 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-ss 3178 df-sn 3638 |
| This theorem is referenced by: snss 3767 snssi 3776 snssd 3777 prssg 3789 ordtri2orexmid 4570 ordtri2or2exmid 4618 ontri2orexmidim 4619 relsng 4777 fvimacnvi 5693 fvimacnv 5694 tpfidceq 7026 strslfv 12848 strslfv3 12849 imasaddfnlemg 13117 imasaddvallemg 13118 lspsnid 14140 psrplusgg 14411 isneip 14589 elnei 14595 iscnp4 14661 cnpnei 14662 |
| Copyright terms: Public domain | W3C validator |