ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snssg Unicode version

Theorem snssg 3773
Description: The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.)
Assertion
Ref Expression
snssg  |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  C_  B ) )

Proof of Theorem snssg
StepHypRef Expression
1 snssb 3772 . . 3  |-  ( { A }  C_  B  <->  ( A  e.  _V  ->  A  e.  B ) )
21bicomi 132 . 2  |-  ( ( A  e.  _V  ->  A  e.  B )  <->  { A }  C_  B )
3 elex 2785 . 2  |-  ( A  e.  V  ->  A  e.  _V )
4 imbibi 252 . 2  |-  ( ( ( A  e.  _V  ->  A  e.  B )  <->  { A }  C_  B
)  ->  ( A  e.  _V  ->  ( A  e.  B  <->  { A }  C_  B ) ) )
52, 3, 4mpsyl 65 1  |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2177   _Vcvv 2773    C_ wss 3170   {csn 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3176  df-ss 3183  df-sn 3644
This theorem is referenced by:  snss  3774  snssi  3783  snssd  3784  prssg  3796  snelpwg  4267  ordtri2orexmid  4584  ordtri2or2exmid  4632  ontri2orexmidim  4633  relsng  4791  fvimacnvi  5712  fvimacnv  5713  tpfidceq  7048  strslfv  12962  strslfv3  12963  imasaddfnlemg  13231  imasaddvallemg  13232  lspsnid  14254  psrplusgg  14525  isneip  14703  elnei  14709  iscnp4  14775  cnpnei  14776  lpvtx  15760
  Copyright terms: Public domain W3C validator