| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssg | Unicode version | ||
| Description: The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snssg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssb 3772 |
. . 3
| |
| 2 | 1 | bicomi 132 |
. 2
|
| 3 | elex 2785 |
. 2
| |
| 4 | imbibi 252 |
. 2
| |
| 5 | 2, 3, 4 | mpsyl 65 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-ss 3183 df-sn 3644 |
| This theorem is referenced by: snss 3774 snssi 3783 snssd 3784 prssg 3796 snelpwg 4267 ordtri2orexmid 4584 ordtri2or2exmid 4632 ontri2orexmidim 4633 relsng 4791 fvimacnvi 5712 fvimacnv 5713 tpfidceq 7048 strslfv 12962 strslfv3 12963 imasaddfnlemg 13231 imasaddvallemg 13232 lspsnid 14254 psrplusgg 14525 isneip 14703 elnei 14709 iscnp4 14775 cnpnei 14776 lpvtx 15760 |
| Copyright terms: Public domain | W3C validator |