ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snssg Unicode version

Theorem snssg 3709
Description: The singleton of an element of a class is a subset of the class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.)
Assertion
Ref Expression
snssg  |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  C_  B ) )

Proof of Theorem snssg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq1 2229 . 2  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
2 sneq 3587 . . 3  |-  ( x  =  A  ->  { x }  =  { A } )
32sseq1d 3171 . 2  |-  ( x  =  A  ->  ( { x }  C_  B 
<->  { A }  C_  B ) )
4 vex 2729 . . 3  |-  x  e. 
_V
54snss 3702 . 2  |-  ( x  e.  B  <->  { x }  C_  B )
61, 3, 5vtoclbg 2787 1  |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136    C_ wss 3116   {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-sn 3582
This theorem is referenced by:  snssi  3717  snssd  3718  prssg  3730  ordtri2orexmid  4500  ordtri2or2exmid  4548  ontri2orexmidim  4549  relsng  4707  fvimacnvi  5599  fvimacnv  5600  strslfv  12438  isneip  12786  elnei  12792  iscnp4  12858  cnpnei  12859
  Copyright terms: Public domain W3C validator