| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssg | Unicode version | ||
| Description: The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snssg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssb 3756 |
. . 3
| |
| 2 | 1 | bicomi 132 |
. 2
|
| 3 | elex 2774 |
. 2
| |
| 4 | imbibi 252 |
. 2
| |
| 5 | 2, 3, 4 | mpsyl 65 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-sn 3629 |
| This theorem is referenced by: snss 3758 snssi 3767 snssd 3768 prssg 3780 ordtri2orexmid 4560 ordtri2or2exmid 4608 ontri2orexmidim 4609 relsng 4767 fvimacnvi 5679 fvimacnv 5680 tpfidceq 7000 strslfv 12748 strslfv3 12749 imasaddfnlemg 13016 imasaddvallemg 13017 lspsnid 14039 psrplusgg 14306 isneip 14466 elnei 14472 iscnp4 14538 cnpnei 14539 |
| Copyright terms: Public domain | W3C validator |