ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relun Unicode version

Theorem relun 4755
Description: The union of two relations is a relation. Compare Exercise 5 of [TakeutiZaring] p. 25. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
relun  |-  ( Rel  ( A  u.  B
)  <->  ( Rel  A  /\  Rel  B ) )

Proof of Theorem relun
StepHypRef Expression
1 unss 3321 . 2  |-  ( ( A  C_  ( _V  X.  _V )  /\  B  C_  ( _V  X.  _V ) )  <->  ( A  u.  B )  C_  ( _V  X.  _V ) )
2 df-rel 4645 . . 3  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
3 df-rel 4645 . . 3  |-  ( Rel 
B  <->  B  C_  ( _V 
X.  _V ) )
42, 3anbi12i 460 . 2  |-  ( ( Rel  A  /\  Rel  B )  <->  ( A  C_  ( _V  X.  _V )  /\  B  C_  ( _V 
X.  _V ) ) )
5 df-rel 4645 . 2  |-  ( Rel  ( A  u.  B
)  <->  ( A  u.  B )  C_  ( _V  X.  _V ) )
61, 4, 53bitr4ri 213 1  |-  ( Rel  ( A  u.  B
)  <->  ( Rel  A  /\  Rel  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   _Vcvv 2749    u. cun 3139    C_ wss 3141    X. cxp 4636   Rel wrel 4643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-rel 4645
This theorem is referenced by:  funun  5272
  Copyright terms: Public domain W3C validator