ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relun Unicode version

Theorem relun 4721
Description: The union of two relations is a relation. Compare Exercise 5 of [TakeutiZaring] p. 25. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
relun  |-  ( Rel  ( A  u.  B
)  <->  ( Rel  A  /\  Rel  B ) )

Proof of Theorem relun
StepHypRef Expression
1 unss 3296 . 2  |-  ( ( A  C_  ( _V  X.  _V )  /\  B  C_  ( _V  X.  _V ) )  <->  ( A  u.  B )  C_  ( _V  X.  _V ) )
2 df-rel 4611 . . 3  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
3 df-rel 4611 . . 3  |-  ( Rel 
B  <->  B  C_  ( _V 
X.  _V ) )
42, 3anbi12i 456 . 2  |-  ( ( Rel  A  /\  Rel  B )  <->  ( A  C_  ( _V  X.  _V )  /\  B  C_  ( _V 
X.  _V ) ) )
5 df-rel 4611 . 2  |-  ( Rel  ( A  u.  B
)  <->  ( A  u.  B )  C_  ( _V  X.  _V ) )
61, 4, 53bitr4ri 212 1  |-  ( Rel  ( A  u.  B
)  <->  ( Rel  A  /\  Rel  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   _Vcvv 2726    u. cun 3114    C_ wss 3116    X. cxp 4602   Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-rel 4611
This theorem is referenced by:  funun  5232
  Copyright terms: Public domain W3C validator