ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relun Unicode version

Theorem relun 4542
Description: The union of two relations is a relation. Compare Exercise 5 of [TakeutiZaring] p. 25. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
relun  |-  ( Rel  ( A  u.  B
)  <->  ( Rel  A  /\  Rel  B ) )

Proof of Theorem relun
StepHypRef Expression
1 unss 3172 . 2  |-  ( ( A  C_  ( _V  X.  _V )  /\  B  C_  ( _V  X.  _V ) )  <->  ( A  u.  B )  C_  ( _V  X.  _V ) )
2 df-rel 4435 . . 3  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
3 df-rel 4435 . . 3  |-  ( Rel 
B  <->  B  C_  ( _V 
X.  _V ) )
42, 3anbi12i 448 . 2  |-  ( ( Rel  A  /\  Rel  B )  <->  ( A  C_  ( _V  X.  _V )  /\  B  C_  ( _V 
X.  _V ) ) )
5 df-rel 4435 . 2  |-  ( Rel  ( A  u.  B
)  <->  ( A  u.  B )  C_  ( _V  X.  _V ) )
61, 4, 53bitr4ri 211 1  |-  ( Rel  ( A  u.  B
)  <->  ( Rel  A  /\  Rel  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103   _Vcvv 2619    u. cun 2995    C_ wss 2997    X. cxp 4426   Rel wrel 4433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-rel 4435
This theorem is referenced by:  funun  5044
  Copyright terms: Public domain W3C validator