ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relun Unicode version

Theorem relun 4728
Description: The union of two relations is a relation. Compare Exercise 5 of [TakeutiZaring] p. 25. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
relun  |-  ( Rel  ( A  u.  B
)  <->  ( Rel  A  /\  Rel  B ) )

Proof of Theorem relun
StepHypRef Expression
1 unss 3301 . 2  |-  ( ( A  C_  ( _V  X.  _V )  /\  B  C_  ( _V  X.  _V ) )  <->  ( A  u.  B )  C_  ( _V  X.  _V ) )
2 df-rel 4618 . . 3  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
3 df-rel 4618 . . 3  |-  ( Rel 
B  <->  B  C_  ( _V 
X.  _V ) )
42, 3anbi12i 457 . 2  |-  ( ( Rel  A  /\  Rel  B )  <->  ( A  C_  ( _V  X.  _V )  /\  B  C_  ( _V 
X.  _V ) ) )
5 df-rel 4618 . 2  |-  ( Rel  ( A  u.  B
)  <->  ( A  u.  B )  C_  ( _V  X.  _V ) )
61, 4, 53bitr4ri 212 1  |-  ( Rel  ( A  u.  B
)  <->  ( Rel  A  /\  Rel  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   _Vcvv 2730    u. cun 3119    C_ wss 3121    X. cxp 4609   Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-rel 4618
This theorem is referenced by:  funun  5242
  Copyright terms: Public domain W3C validator