Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relun | GIF version |
Description: The union of two relations is a relation. Compare Exercise 5 of [TakeutiZaring] p. 25. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
relun | ⊢ (Rel (𝐴 ∪ 𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss 3301 | . 2 ⊢ ((𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V)) ↔ (𝐴 ∪ 𝐵) ⊆ (V × V)) | |
2 | df-rel 4618 | . . 3 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
3 | df-rel 4618 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
4 | 2, 3 | anbi12i 457 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) ↔ (𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V))) |
5 | df-rel 4618 | . 2 ⊢ (Rel (𝐴 ∪ 𝐵) ↔ (𝐴 ∪ 𝐵) ⊆ (V × V)) | |
6 | 1, 4, 5 | 3bitr4ri 212 | 1 ⊢ (Rel (𝐴 ∪ 𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 Vcvv 2730 ∪ cun 3119 ⊆ wss 3121 × cxp 4609 Rel wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-rel 4618 |
This theorem is referenced by: funun 5242 |
Copyright terms: Public domain | W3C validator |