ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relun GIF version

Theorem relun 4726
Description: The union of two relations is a relation. Compare Exercise 5 of [TakeutiZaring] p. 25. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
relun (Rel (𝐴𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵))

Proof of Theorem relun
StepHypRef Expression
1 unss 3301 . 2 ((𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V)) ↔ (𝐴𝐵) ⊆ (V × V))
2 df-rel 4616 . . 3 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 4616 . . 3 (Rel 𝐵𝐵 ⊆ (V × V))
42, 3anbi12i 457 . 2 ((Rel 𝐴 ∧ Rel 𝐵) ↔ (𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V)))
5 df-rel 4616 . 2 (Rel (𝐴𝐵) ↔ (𝐴𝐵) ⊆ (V × V))
61, 4, 53bitr4ri 212 1 (Rel (𝐴𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  Vcvv 2730  cun 3119  wss 3121   × cxp 4607  Rel wrel 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-rel 4616
This theorem is referenced by:  funun  5240
  Copyright terms: Public domain W3C validator