![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relun | GIF version |
Description: The union of two relations is a relation. Compare Exercise 5 of [TakeutiZaring] p. 25. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
relun | ⊢ (Rel (𝐴 ∪ 𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss 3333 | . 2 ⊢ ((𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V)) ↔ (𝐴 ∪ 𝐵) ⊆ (V × V)) | |
2 | df-rel 4666 | . . 3 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
3 | df-rel 4666 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
4 | 2, 3 | anbi12i 460 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) ↔ (𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V))) |
5 | df-rel 4666 | . 2 ⊢ (Rel (𝐴 ∪ 𝐵) ↔ (𝐴 ∪ 𝐵) ⊆ (V × V)) | |
6 | 1, 4, 5 | 3bitr4ri 213 | 1 ⊢ (Rel (𝐴 ∪ 𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 Vcvv 2760 ∪ cun 3151 ⊆ wss 3153 × cxp 4657 Rel wrel 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-rel 4666 |
This theorem is referenced by: funun 5298 |
Copyright terms: Public domain | W3C validator |