Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  relun GIF version

Theorem relun 4651
 Description: The union of two relations is a relation. Compare Exercise 5 of [TakeutiZaring] p. 25. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
relun (Rel (𝐴𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵))

Proof of Theorem relun
StepHypRef Expression
1 unss 3245 . 2 ((𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V)) ↔ (𝐴𝐵) ⊆ (V × V))
2 df-rel 4541 . . 3 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 4541 . . 3 (Rel 𝐵𝐵 ⊆ (V × V))
42, 3anbi12i 455 . 2 ((Rel 𝐴 ∧ Rel 𝐵) ↔ (𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V)))
5 df-rel 4541 . 2 (Rel (𝐴𝐵) ↔ (𝐴𝐵) ⊆ (V × V))
61, 4, 53bitr4ri 212 1 (Rel (𝐴𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵))
 Colors of variables: wff set class Syntax hints:   ∧ wa 103   ↔ wb 104  Vcvv 2681   ∪ cun 3064   ⊆ wss 3066   × cxp 4532  Rel wrel 4539 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-rel 4541 This theorem is referenced by:  funun  5162
 Copyright terms: Public domain W3C validator