ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relun GIF version

Theorem relun 4800
Description: The union of two relations is a relation. Compare Exercise 5 of [TakeutiZaring] p. 25. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
relun (Rel (𝐴𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵))

Proof of Theorem relun
StepHypRef Expression
1 unss 3351 . 2 ((𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V)) ↔ (𝐴𝐵) ⊆ (V × V))
2 df-rel 4690 . . 3 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 4690 . . 3 (Rel 𝐵𝐵 ⊆ (V × V))
42, 3anbi12i 460 . 2 ((Rel 𝐴 ∧ Rel 𝐵) ↔ (𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V)))
5 df-rel 4690 . 2 (Rel (𝐴𝐵) ↔ (𝐴𝐵) ⊆ (V × V))
61, 4, 53bitr4ri 213 1 (Rel (𝐴𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  Vcvv 2773  cun 3168  wss 3170   × cxp 4681  Rel wrel 4688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-rel 4690
This theorem is referenced by:  funun  5324  fununfun  5326
  Copyright terms: Public domain W3C validator