ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqxpexg Unicode version

Theorem sqxpexg 4725
Description: The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.)
Assertion
Ref Expression
sqxpexg  |-  ( A  e.  V  ->  ( A  X.  A )  e. 
_V )

Proof of Theorem sqxpexg
StepHypRef Expression
1 xpexg 4723 . 2  |-  ( ( A  e.  V  /\  A  e.  V )  ->  ( A  X.  A
)  e.  _V )
21anidms 395 1  |-  ( A  e.  V  ->  ( A  X.  A )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   _Vcvv 2730    X. cxp 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-opab 4049  df-xp 4615
This theorem is referenced by:  ispsmet  13076  ismet  13097  isxmet  13098  xmetunirn  13111
  Copyright terms: Public domain W3C validator