ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqxpexg Unicode version

Theorem sqxpexg 4809
Description: The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.)
Assertion
Ref Expression
sqxpexg  |-  ( A  e.  V  ->  ( A  X.  A )  e. 
_V )

Proof of Theorem sqxpexg
StepHypRef Expression
1 xpexg 4807 . 2  |-  ( ( A  e.  V  /\  A  e.  V )  ->  ( A  X.  A
)  e.  _V )
21anidms 397 1  |-  ( A  e.  V  ->  ( A  X.  A )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   _Vcvv 2776    X. cxp 4691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-opab 4122  df-xp 4699
This theorem is referenced by:  ispsmet  14910  ismet  14931  isxmet  14932  xmetunirn  14945
  Copyright terms: Public domain W3C validator