Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unss | Unicode version |
Description: The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
Ref | Expression |
---|---|
unss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3136 | . 2 | |
2 | 19.26 1474 | . . 3 | |
3 | elun 3268 | . . . . . 6 | |
4 | 3 | imbi1i 237 | . . . . 5 |
5 | jaob 705 | . . . . 5 | |
6 | 4, 5 | bitri 183 | . . . 4 |
7 | 6 | albii 1463 | . . 3 |
8 | dfss2 3136 | . . . 4 | |
9 | dfss2 3136 | . . . 4 | |
10 | 8, 9 | anbi12i 457 | . . 3 |
11 | 2, 7, 10 | 3bitr4i 211 | . 2 |
12 | 1, 11 | bitr2i 184 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 wal 1346 wcel 2141 cun 3119 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 |
This theorem is referenced by: unssi 3302 unssd 3303 unssad 3304 unssbd 3305 uneqin 3378 undifss 3494 prss 3734 prssg 3735 tpss 3743 pwundifss 4268 ordsucss 4486 elomssom 4587 eqrelrel 4710 xpsspw 4721 relun 4726 relcoi2 5139 dfer2 6512 fimaxre2 11183 uncld 12872 bdeqsuc 13881 exmid1stab 13998 |
Copyright terms: Public domain | W3C validator |