Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unss | Unicode version |
Description: The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
Ref | Expression |
---|---|
unss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3131 | . 2 | |
2 | 19.26 1469 | . . 3 | |
3 | elun 3263 | . . . . . 6 | |
4 | 3 | imbi1i 237 | . . . . 5 |
5 | jaob 700 | . . . . 5 | |
6 | 4, 5 | bitri 183 | . . . 4 |
7 | 6 | albii 1458 | . . 3 |
8 | dfss2 3131 | . . . 4 | |
9 | dfss2 3131 | . . . 4 | |
10 | 8, 9 | anbi12i 456 | . . 3 |
11 | 2, 7, 10 | 3bitr4i 211 | . 2 |
12 | 1, 11 | bitr2i 184 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wal 1341 wcel 2136 cun 3114 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 |
This theorem is referenced by: unssi 3297 unssd 3298 unssad 3299 unssbd 3300 uneqin 3373 undifss 3489 prss 3729 prssg 3730 tpss 3738 pwundifss 4263 ordsucss 4481 elomssom 4582 eqrelrel 4705 xpsspw 4716 relun 4721 relcoi2 5134 dfer2 6502 fimaxre2 11168 uncld 12753 bdeqsuc 13763 exmid1stab 13880 |
Copyright terms: Public domain | W3C validator |