ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unss Unicode version

Theorem unss 3163
Description: The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.)
Assertion
Ref Expression
unss  |-  ( ( A  C_  C  /\  B  C_  C )  <->  ( A  u.  B )  C_  C
)

Proof of Theorem unss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dfss2 3003 . 2  |-  ( ( A  u.  B ) 
C_  C  <->  A. x
( x  e.  ( A  u.  B )  ->  x  e.  C
) )
2 19.26 1413 . . 3  |-  ( A. x ( ( x  e.  A  ->  x  e.  C )  /\  (
x  e.  B  ->  x  e.  C )
)  <->  ( A. x
( x  e.  A  ->  x  e.  C )  /\  A. x ( x  e.  B  ->  x  e.  C )
) )
3 elun 3130 . . . . . 6  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
43imbi1i 236 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  ->  x  e.  C )  <->  ( ( x  e.  A  \/  x  e.  B
)  ->  x  e.  C ) )
5 jaob 664 . . . . 5  |-  ( ( ( x  e.  A  \/  x  e.  B
)  ->  x  e.  C )  <->  ( (
x  e.  A  ->  x  e.  C )  /\  ( x  e.  B  ->  x  e.  C ) ) )
64, 5bitri 182 . . . 4  |-  ( ( x  e.  ( A  u.  B )  ->  x  e.  C )  <->  ( ( x  e.  A  ->  x  e.  C )  /\  ( x  e.  B  ->  x  e.  C ) ) )
76albii 1402 . . 3  |-  ( A. x ( x  e.  ( A  u.  B
)  ->  x  e.  C )  <->  A. x
( ( x  e.  A  ->  x  e.  C )  /\  (
x  e.  B  ->  x  e.  C )
) )
8 dfss2 3003 . . . 4  |-  ( A 
C_  C  <->  A. x
( x  e.  A  ->  x  e.  C ) )
9 dfss2 3003 . . . 4  |-  ( B 
C_  C  <->  A. x
( x  e.  B  ->  x  e.  C ) )
108, 9anbi12i 448 . . 3  |-  ( ( A  C_  C  /\  B  C_  C )  <->  ( A. x ( x  e.  A  ->  x  e.  C )  /\  A. x ( x  e.  B  ->  x  e.  C ) ) )
112, 7, 103bitr4i 210 . 2  |-  ( A. x ( x  e.  ( A  u.  B
)  ->  x  e.  C )  <->  ( A  C_  C  /\  B  C_  C ) )
121, 11bitr2i 183 1  |-  ( ( A  C_  C  /\  B  C_  C )  <->  ( A  u.  B )  C_  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 662   A.wal 1285    e. wcel 1436    u. cun 2986    C_ wss 2988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-v 2617  df-un 2992  df-in 2994  df-ss 3001
This theorem is referenced by:  unssi  3164  unssd  3165  unssad  3166  unssbd  3167  uneqin  3239  undifss  3350  prss  3578  prssg  3579  tpss  3587  pwundifss  4088  ordsucss  4296  elnn  4395  eqrelrel  4509  xpsspw  4520  relun  4524  relcoi2  4929  dfer2  6247  fimaxre2  10574  bdeqsuc  11260
  Copyright terms: Public domain W3C validator