| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unss | Unicode version | ||
| Description: The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
| Ref | Expression |
|---|---|
| unss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3181 |
. 2
| |
| 2 | 19.26 1504 |
. . 3
| |
| 3 | elun 3314 |
. . . . . 6
| |
| 4 | 3 | imbi1i 238 |
. . . . 5
|
| 5 | jaob 712 |
. . . . 5
| |
| 6 | 4, 5 | bitri 184 |
. . . 4
|
| 7 | 6 | albii 1493 |
. . 3
|
| 8 | ssalel 3181 |
. . . 4
| |
| 9 | ssalel 3181 |
. . . 4
| |
| 10 | 8, 9 | anbi12i 460 |
. . 3
|
| 11 | 2, 7, 10 | 3bitr4i 212 |
. 2
|
| 12 | 1, 11 | bitr2i 185 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 |
| This theorem is referenced by: unssi 3348 unssd 3349 unssad 3350 unssbd 3351 uneqin 3424 undifss 3541 prss 3789 prssg 3790 tpss 3799 exmid1stab 4252 pwundifss 4332 ordsucss 4552 elomssom 4653 eqrelrel 4776 xpsspw 4787 relun 4792 relcoi2 5213 dfer2 6621 fimaxre2 11538 uncld 14585 plyun0 15208 bdeqsuc 15817 |
| Copyright terms: Public domain | W3C validator |