ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unss Unicode version

Theorem unss 3301
Description: The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.)
Assertion
Ref Expression
unss  |-  ( ( A  C_  C  /\  B  C_  C )  <->  ( A  u.  B )  C_  C
)

Proof of Theorem unss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dfss2 3136 . 2  |-  ( ( A  u.  B ) 
C_  C  <->  A. x
( x  e.  ( A  u.  B )  ->  x  e.  C
) )
2 19.26 1474 . . 3  |-  ( A. x ( ( x  e.  A  ->  x  e.  C )  /\  (
x  e.  B  ->  x  e.  C )
)  <->  ( A. x
( x  e.  A  ->  x  e.  C )  /\  A. x ( x  e.  B  ->  x  e.  C )
) )
3 elun 3268 . . . . . 6  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
43imbi1i 237 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  ->  x  e.  C )  <->  ( ( x  e.  A  \/  x  e.  B
)  ->  x  e.  C ) )
5 jaob 705 . . . . 5  |-  ( ( ( x  e.  A  \/  x  e.  B
)  ->  x  e.  C )  <->  ( (
x  e.  A  ->  x  e.  C )  /\  ( x  e.  B  ->  x  e.  C ) ) )
64, 5bitri 183 . . . 4  |-  ( ( x  e.  ( A  u.  B )  ->  x  e.  C )  <->  ( ( x  e.  A  ->  x  e.  C )  /\  ( x  e.  B  ->  x  e.  C ) ) )
76albii 1463 . . 3  |-  ( A. x ( x  e.  ( A  u.  B
)  ->  x  e.  C )  <->  A. x
( ( x  e.  A  ->  x  e.  C )  /\  (
x  e.  B  ->  x  e.  C )
) )
8 dfss2 3136 . . . 4  |-  ( A 
C_  C  <->  A. x
( x  e.  A  ->  x  e.  C ) )
9 dfss2 3136 . . . 4  |-  ( B 
C_  C  <->  A. x
( x  e.  B  ->  x  e.  C ) )
108, 9anbi12i 457 . . 3  |-  ( ( A  C_  C  /\  B  C_  C )  <->  ( A. x ( x  e.  A  ->  x  e.  C )  /\  A. x ( x  e.  B  ->  x  e.  C ) ) )
112, 7, 103bitr4i 211 . 2  |-  ( A. x ( x  e.  ( A  u.  B
)  ->  x  e.  C )  <->  ( A  C_  C  /\  B  C_  C ) )
121, 11bitr2i 184 1  |-  ( ( A  C_  C  /\  B  C_  C )  <->  ( A  u.  B )  C_  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703   A.wal 1346    e. wcel 2141    u. cun 3119    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134
This theorem is referenced by:  unssi  3302  unssd  3303  unssad  3304  unssbd  3305  uneqin  3378  undifss  3495  prss  3736  prssg  3737  tpss  3745  pwundifss  4270  ordsucss  4488  elomssom  4589  eqrelrel  4712  xpsspw  4723  relun  4728  relcoi2  5141  dfer2  6514  fimaxre2  11190  uncld  12907  bdeqsuc  13916  exmid1stab  14033
  Copyright terms: Public domain W3C validator