| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unss | Unicode version | ||
| Description: The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
| Ref | Expression |
|---|---|
| unss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3189 |
. 2
| |
| 2 | 19.26 1505 |
. . 3
| |
| 3 | elun 3322 |
. . . . . 6
| |
| 4 | 3 | imbi1i 238 |
. . . . 5
|
| 5 | jaob 712 |
. . . . 5
| |
| 6 | 4, 5 | bitri 184 |
. . . 4
|
| 7 | 6 | albii 1494 |
. . 3
|
| 8 | ssalel 3189 |
. . . 4
| |
| 9 | ssalel 3189 |
. . . 4
| |
| 10 | 8, 9 | anbi12i 460 |
. . 3
|
| 11 | 2, 7, 10 | 3bitr4i 212 |
. 2
|
| 12 | 1, 11 | bitr2i 185 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 |
| This theorem is referenced by: unssi 3356 unssd 3357 unssad 3358 unssbd 3359 uneqin 3432 undifss 3549 prss 3800 prssg 3801 tpss 3812 exmid1stab 4268 pwundifss 4350 ordsucss 4570 elomssom 4671 eqrelrel 4794 xpsspw 4805 relun 4810 relcoi2 5232 dfer2 6644 fimaxre2 11653 uncld 14700 plyun0 15323 bdeqsuc 16016 |
| Copyright terms: Public domain | W3C validator |