ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexpi Unicode version

Theorem ltexpi 7236
Description: Ordering on positive integers in terms of existence of sum. (Contributed by NM, 15-Mar-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
Assertion
Ref Expression
ltexpi  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  E. x  e.  N.  ( A  +N  x )  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem ltexpi
StepHypRef Expression
1 pinn 7208 . . 3  |-  ( A  e.  N.  ->  A  e.  om )
2 pinn 7208 . . 3  |-  ( B  e.  N.  ->  B  e.  om )
3 nnaordex 6463 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
41, 2, 3syl2an 287 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  e.  B  <->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
5 ltpiord 7218 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  A  e.  B ) )
6 addpiord 7215 . . . . . . 7  |-  ( ( A  e.  N.  /\  x  e.  N. )  ->  ( A  +N  x
)  =  ( A  +o  x ) )
76eqeq1d 2163 . . . . . 6  |-  ( ( A  e.  N.  /\  x  e.  N. )  ->  ( ( A  +N  x )  =  B  <-> 
( A  +o  x
)  =  B ) )
87pm5.32da 448 . . . . 5  |-  ( A  e.  N.  ->  (
( x  e.  N.  /\  ( A  +N  x
)  =  B )  <-> 
( x  e.  N.  /\  ( A  +o  x
)  =  B ) ) )
9 elni2 7213 . . . . . . 7  |-  ( x  e.  N.  <->  ( x  e.  om  /\  (/)  e.  x
) )
109anbi1i 454 . . . . . 6  |-  ( ( x  e.  N.  /\  ( A  +o  x
)  =  B )  <-> 
( ( x  e. 
om  /\  (/)  e.  x
)  /\  ( A  +o  x )  =  B ) )
11 anass 399 . . . . . 6  |-  ( ( ( x  e.  om  /\  (/)  e.  x )  /\  ( A  +o  x
)  =  B )  <-> 
( x  e.  om  /\  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
1210, 11bitri 183 . . . . 5  |-  ( ( x  e.  N.  /\  ( A  +o  x
)  =  B )  <-> 
( x  e.  om  /\  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
138, 12bitrdi 195 . . . 4  |-  ( A  e.  N.  ->  (
( x  e.  N.  /\  ( A  +N  x
)  =  B )  <-> 
( x  e.  om  /\  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) )
1413rexbidv2 2457 . . 3  |-  ( A  e.  N.  ->  ( E. x  e.  N.  ( A  +N  x
)  =  B  <->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
1514adantr 274 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( E. x  e. 
N.  ( A  +N  x )  =  B  <->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
164, 5, 153bitr4d 219 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  E. x  e.  N.  ( A  +N  x )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 2125   E.wrex 2433   (/)c0 3390   class class class wbr 3961   omcom 4543  (class class class)co 5814    +o coa 6350   N.cnpi 7171    +N cpli 7172    <N clti 7174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-eprel 4244  df-id 4248  df-iord 4321  df-on 4323  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-1o 6353  df-oadd 6357  df-ni 7203  df-pli 7204  df-lti 7206
This theorem is referenced by:  ltexnqq  7307
  Copyright terms: Public domain W3C validator