ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoini Unicode version

Theorem isoini 5797
Description: Isomorphisms preserve initial segments. Proposition 6.31(2) of [TakeutiZaring] p. 33. (Contributed by NM, 20-Apr-2004.)
Assertion
Ref Expression
isoini  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  D  e.  A )  ->  ( H " ( A  i^i  ( `' R " { D } ) ) )  =  ( B  i^i  ( `' S " { ( H `  D ) } ) ) )

Proof of Theorem isoini
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfima2 4955 . 2  |-  ( H
" ( A  i^i  ( `' R " { D } ) ) )  =  { y  |  E. x  e.  ( A  i^i  ( `' R " { D } ) ) x H y }
2 elin 3310 . . . 4  |-  ( y  e.  ( B  i^i  ( `' S " { ( H `  D ) } ) )  <->  ( y  e.  B  /\  y  e.  ( `' S " { ( H `  D ) } ) ) )
3 isof1o 5786 . . . . . . . . 9  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
4 f1ofo 5449 . . . . . . . . 9  |-  ( H : A -1-1-onto-> B  ->  H : A -onto-> B )
5 forn 5423 . . . . . . . . . 10  |-  ( H : A -onto-> B  ->  ran  H  =  B )
65eleq2d 2240 . . . . . . . . 9  |-  ( H : A -onto-> B  -> 
( y  e.  ran  H  <-> 
y  e.  B ) )
73, 4, 63syl 17 . . . . . . . 8  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( y  e. 
ran  H  <->  y  e.  B
) )
8 f1ofn 5443 . . . . . . . . 9  |-  ( H : A -1-1-onto-> B  ->  H  Fn  A )
9 fvelrnb 5544 . . . . . . . . 9  |-  ( H  Fn  A  ->  (
y  e.  ran  H  <->  E. x  e.  A  ( H `  x )  =  y ) )
103, 8, 93syl 17 . . . . . . . 8  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( y  e. 
ran  H  <->  E. x  e.  A  ( H `  x )  =  y ) )
117, 10bitr3d 189 . . . . . . 7  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( y  e.  B  <->  E. x  e.  A  ( H `  x )  =  y ) )
1211adantr 274 . . . . . 6  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  D  e.  A )  ->  (
y  e.  B  <->  E. x  e.  A  ( H `  x )  =  y ) )
133, 8syl 14 . . . . . . . 8  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H  Fn  A
)
1413anim1i 338 . . . . . . 7  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  D  e.  A )  ->  ( H  Fn  A  /\  D  e.  A )
)
15 funfvex 5513 . . . . . . . 8  |-  ( ( Fun  H  /\  D  e.  dom  H )  -> 
( H `  D
)  e.  _V )
1615funfni 5298 . . . . . . 7  |-  ( ( H  Fn  A  /\  D  e.  A )  ->  ( H `  D
)  e.  _V )
17 vex 2733 . . . . . . . 8  |-  y  e. 
_V
1817eliniseg 4981 . . . . . . 7  |-  ( ( H `  D )  e.  _V  ->  (
y  e.  ( `' S " { ( H `  D ) } )  <->  y S
( H `  D
) ) )
1914, 16, 183syl 17 . . . . . 6  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  D  e.  A )  ->  (
y  e.  ( `' S " { ( H `  D ) } )  <->  y S
( H `  D
) ) )
2012, 19anbi12d 470 . . . . 5  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  D  e.  A )  ->  (
( y  e.  B  /\  y  e.  ( `' S " { ( H `  D ) } ) )  <->  ( E. x  e.  A  ( H `  x )  =  y  /\  y S ( H `  D ) ) ) )
21 elin 3310 . . . . . . . . . . . 12  |-  ( x  e.  ( A  i^i  ( `' R " { D } ) )  <->  ( x  e.  A  /\  x  e.  ( `' R " { D } ) ) )
22 vex 2733 . . . . . . . . . . . . . 14  |-  x  e. 
_V
2322eliniseg 4981 . . . . . . . . . . . . 13  |-  ( D  e.  A  ->  (
x  e.  ( `' R " { D } )  <->  x R D ) )
2423anbi2d 461 . . . . . . . . . . . 12  |-  ( D  e.  A  ->  (
( x  e.  A  /\  x  e.  ( `' R " { D } ) )  <->  ( x  e.  A  /\  x R D ) ) )
2521, 24syl5bb 191 . . . . . . . . . . 11  |-  ( D  e.  A  ->  (
x  e.  ( A  i^i  ( `' R " { D } ) )  <->  ( x  e.  A  /\  x R D ) ) )
2625anbi1d 462 . . . . . . . . . 10  |-  ( D  e.  A  ->  (
( x  e.  ( A  i^i  ( `' R " { D } ) )  /\  x H y )  <->  ( (
x  e.  A  /\  x R D )  /\  x H y ) ) )
27 anass 399 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  x R D )  /\  x H y )  <->  ( x  e.  A  /\  ( x R D  /\  x H y ) ) )
2826, 27bitrdi 195 . . . . . . . . 9  |-  ( D  e.  A  ->  (
( x  e.  ( A  i^i  ( `' R " { D } ) )  /\  x H y )  <->  ( x  e.  A  /\  (
x R D  /\  x H y ) ) ) )
2928adantl 275 . . . . . . . 8  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  D  e.  A )  ->  (
( x  e.  ( A  i^i  ( `' R " { D } ) )  /\  x H y )  <->  ( x  e.  A  /\  (
x R D  /\  x H y ) ) ) )
30 isorel 5787 . . . . . . . . . . . . . 14  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
x  e.  A  /\  D  e.  A )
)  ->  ( x R D  <->  ( H `  x ) S ( H `  D ) ) )
31 fnbrfvb 5537 . . . . . . . . . . . . . . . . 17  |-  ( ( H  Fn  A  /\  x  e.  A )  ->  ( ( H `  x )  =  y  <-> 
x H y ) )
3231bicomd 140 . . . . . . . . . . . . . . . 16  |-  ( ( H  Fn  A  /\  x  e.  A )  ->  ( x H y  <-> 
( H `  x
)  =  y ) )
3313, 32sylan 281 . . . . . . . . . . . . . . 15  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  x  e.  A )  ->  (
x H y  <->  ( H `  x )  =  y ) )
3433adantrr 476 . . . . . . . . . . . . . 14  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
x  e.  A  /\  D  e.  A )
)  ->  ( x H y  <->  ( H `  x )  =  y ) )
3530, 34anbi12d 470 . . . . . . . . . . . . 13  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
x  e.  A  /\  D  e.  A )
)  ->  ( (
x R D  /\  x H y )  <->  ( ( H `  x ) S ( H `  D )  /\  ( H `  x )  =  y ) ) )
36 ancom 264 . . . . . . . . . . . . . 14  |-  ( ( ( H `  x
) S ( H `
 D )  /\  ( H `  x )  =  y )  <->  ( ( H `  x )  =  y  /\  ( H `  x ) S ( H `  D ) ) )
37 breq1 3992 . . . . . . . . . . . . . . 15  |-  ( ( H `  x )  =  y  ->  (
( H `  x
) S ( H `
 D )  <->  y S
( H `  D
) ) )
3837pm5.32i 451 . . . . . . . . . . . . . 14  |-  ( ( ( H `  x
)  =  y  /\  ( H `  x ) S ( H `  D ) )  <->  ( ( H `  x )  =  y  /\  y S ( H `  D ) ) )
3936, 38bitri 183 . . . . . . . . . . . . 13  |-  ( ( ( H `  x
) S ( H `
 D )  /\  ( H `  x )  =  y )  <->  ( ( H `  x )  =  y  /\  y S ( H `  D ) ) )
4035, 39bitrdi 195 . . . . . . . . . . . 12  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
x  e.  A  /\  D  e.  A )
)  ->  ( (
x R D  /\  x H y )  <->  ( ( H `  x )  =  y  /\  y S ( H `  D ) ) ) )
4140exp32 363 . . . . . . . . . . 11  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( x  e.  A  ->  ( D  e.  A  ->  ( ( x R D  /\  x H y )  <->  ( ( H `  x )  =  y  /\  y S ( H `  D ) ) ) ) ) )
4241com23 78 . . . . . . . . . 10  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( D  e.  A  ->  ( x  e.  A  ->  ( ( x R D  /\  x H y )  <->  ( ( H `  x )  =  y  /\  y S ( H `  D ) ) ) ) ) )
4342imp 123 . . . . . . . . 9  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  D  e.  A )  ->  (
x  e.  A  -> 
( ( x R D  /\  x H y )  <->  ( ( H `  x )  =  y  /\  y S ( H `  D ) ) ) ) )
4443pm5.32d 447 . . . . . . . 8  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  D  e.  A )  ->  (
( x  e.  A  /\  ( x R D  /\  x H y ) )  <->  ( x  e.  A  /\  (
( H `  x
)  =  y  /\  y S ( H `  D ) ) ) ) )
4529, 44bitrd 187 . . . . . . 7  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  D  e.  A )  ->  (
( x  e.  ( A  i^i  ( `' R " { D } ) )  /\  x H y )  <->  ( x  e.  A  /\  (
( H `  x
)  =  y  /\  y S ( H `  D ) ) ) ) )
4645rexbidv2 2473 . . . . . 6  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  D  e.  A )  ->  ( E. x  e.  ( A  i^i  ( `' R " { D } ) ) x H y  <->  E. x  e.  A  ( ( H `  x )  =  y  /\  y S ( H `  D ) ) ) )
47 r19.41v 2626 . . . . . 6  |-  ( E. x  e.  A  ( ( H `  x
)  =  y  /\  y S ( H `  D ) )  <->  ( E. x  e.  A  ( H `  x )  =  y  /\  y S ( H `  D ) ) )
4846, 47bitrdi 195 . . . . 5  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  D  e.  A )  ->  ( E. x  e.  ( A  i^i  ( `' R " { D } ) ) x H y  <-> 
( E. x  e.  A  ( H `  x )  =  y  /\  y S ( H `  D ) ) ) )
4920, 48bitr4d 190 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  D  e.  A )  ->  (
( y  e.  B  /\  y  e.  ( `' S " { ( H `  D ) } ) )  <->  E. x  e.  ( A  i^i  ( `' R " { D } ) ) x H y ) )
502, 49syl5bb 191 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  D  e.  A )  ->  (
y  e.  ( B  i^i  ( `' S " { ( H `  D ) } ) )  <->  E. x  e.  ( A  i^i  ( `' R " { D } ) ) x H y ) )
5150abbi2dv 2289 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  D  e.  A )  ->  ( B  i^i  ( `' S " { ( H `  D ) } ) )  =  { y  |  E. x  e.  ( A  i^i  ( `' R " { D } ) ) x H y } )
521, 51eqtr4id 2222 1  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  D  e.  A )  ->  ( H " ( A  i^i  ( `' R " { D } ) ) )  =  ( B  i^i  ( `' S " { ( H `  D ) } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   {cab 2156   E.wrex 2449   _Vcvv 2730    i^i cin 3120   {csn 3583   class class class wbr 3989   `'ccnv 4610   ran crn 4612   "cima 4614    Fn wfn 5193   -onto->wfo 5196   -1-1-onto->wf1o 5197   ` cfv 5198    Isom wiso 5199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207
This theorem is referenced by:  isoini2  5798  isoselem  5799
  Copyright terms: Public domain W3C validator