ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexsupp Unicode version

Theorem rexsupp 5683
Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Assertion
Ref Expression
rexsupp  |-  ( F  Fn  A  ->  ( E. x  e.  ( `' F " ( _V 
\  { Z }
) ) ph  <->  E. x  e.  A  ( ( F `  x )  =/=  Z  /\  ph )
) )
Distinct variable groups:    x, F    x, A
Allowed substitution hints:    ph( x)    Z( x)

Proof of Theorem rexsupp
StepHypRef Expression
1 elpreima 5678 . . . . 5  |-  ( F  Fn  A  ->  (
x  e.  ( `' F " ( _V 
\  { Z }
) )  <->  ( x  e.  A  /\  ( F `  x )  e.  ( _V  \  { Z } ) ) ) )
2 eldifsn 3746 . . . . . . 7  |-  ( ( F `  x )  e.  ( _V  \  { Z } )  <->  ( ( F `  x )  e.  _V  /\  ( F `
 x )  =/= 
Z ) )
3 funfvex 5572 . . . . . . . . 9  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
43funfni 5355 . . . . . . . 8  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  _V )
54biantrurd 305 . . . . . . 7  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =/=  Z  <->  ( ( F `  x
)  e.  _V  /\  ( F `  x )  =/=  Z ) ) )
62, 5bitr4id 199 . . . . . 6  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  e.  ( _V  \  { Z } )  <->  ( F `  x )  =/=  Z
) )
76pm5.32da 452 . . . . 5  |-  ( F  Fn  A  ->  (
( x  e.  A  /\  ( F `  x
)  e.  ( _V 
\  { Z }
) )  <->  ( x  e.  A  /\  ( F `  x )  =/=  Z ) ) )
81, 7bitrd 188 . . . 4  |-  ( F  Fn  A  ->  (
x  e.  ( `' F " ( _V 
\  { Z }
) )  <->  ( x  e.  A  /\  ( F `  x )  =/=  Z ) ) )
98anbi1d 465 . . 3  |-  ( F  Fn  A  ->  (
( x  e.  ( `' F " ( _V 
\  { Z }
) )  /\  ph ) 
<->  ( ( x  e.  A  /\  ( F `
 x )  =/= 
Z )  /\  ph ) ) )
10 anass 401 . . 3  |-  ( ( ( x  e.  A  /\  ( F `  x
)  =/=  Z )  /\  ph )  <->  ( x  e.  A  /\  (
( F `  x
)  =/=  Z  /\  ph ) ) )
119, 10bitrdi 196 . 2  |-  ( F  Fn  A  ->  (
( x  e.  ( `' F " ( _V 
\  { Z }
) )  /\  ph ) 
<->  ( x  e.  A  /\  ( ( F `  x )  =/=  Z  /\  ph ) ) ) )
1211rexbidv2 2497 1  |-  ( F  Fn  A  ->  ( E. x  e.  ( `' F " ( _V 
\  { Z }
) ) ph  <->  E. x  e.  A  ( ( F `  x )  =/=  Z  /\  ph )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164    =/= wne 2364   E.wrex 2473   _Vcvv 2760    \ cdif 3151   {csn 3619   `'ccnv 4659   "cima 4663    Fn wfn 5250   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator