ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexsupp Unicode version

Theorem rexsupp 5632
Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Assertion
Ref Expression
rexsupp  |-  ( F  Fn  A  ->  ( E. x  e.  ( `' F " ( _V 
\  { Z }
) ) ph  <->  E. x  e.  A  ( ( F `  x )  =/=  Z  /\  ph )
) )
Distinct variable groups:    x, F    x, A
Allowed substitution hints:    ph( x)    Z( x)

Proof of Theorem rexsupp
StepHypRef Expression
1 elpreima 5627 . . . . 5  |-  ( F  Fn  A  ->  (
x  e.  ( `' F " ( _V 
\  { Z }
) )  <->  ( x  e.  A  /\  ( F `  x )  e.  ( _V  \  { Z } ) ) ) )
2 eldifsn 3716 . . . . . . 7  |-  ( ( F `  x )  e.  ( _V  \  { Z } )  <->  ( ( F `  x )  e.  _V  /\  ( F `
 x )  =/= 
Z ) )
3 funfvex 5524 . . . . . . . . 9  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
43funfni 5308 . . . . . . . 8  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  _V )
54biantrurd 305 . . . . . . 7  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =/=  Z  <->  ( ( F `  x
)  e.  _V  /\  ( F `  x )  =/=  Z ) ) )
62, 5bitr4id 199 . . . . . 6  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  e.  ( _V  \  { Z } )  <->  ( F `  x )  =/=  Z
) )
76pm5.32da 452 . . . . 5  |-  ( F  Fn  A  ->  (
( x  e.  A  /\  ( F `  x
)  e.  ( _V 
\  { Z }
) )  <->  ( x  e.  A  /\  ( F `  x )  =/=  Z ) ) )
81, 7bitrd 188 . . . 4  |-  ( F  Fn  A  ->  (
x  e.  ( `' F " ( _V 
\  { Z }
) )  <->  ( x  e.  A  /\  ( F `  x )  =/=  Z ) ) )
98anbi1d 465 . . 3  |-  ( F  Fn  A  ->  (
( x  e.  ( `' F " ( _V 
\  { Z }
) )  /\  ph ) 
<->  ( ( x  e.  A  /\  ( F `
 x )  =/= 
Z )  /\  ph ) ) )
10 anass 401 . . 3  |-  ( ( ( x  e.  A  /\  ( F `  x
)  =/=  Z )  /\  ph )  <->  ( x  e.  A  /\  (
( F `  x
)  =/=  Z  /\  ph ) ) )
119, 10bitrdi 196 . 2  |-  ( F  Fn  A  ->  (
( x  e.  ( `' F " ( _V 
\  { Z }
) )  /\  ph ) 
<->  ( x  e.  A  /\  ( ( F `  x )  =/=  Z  /\  ph ) ) ) )
1211rexbidv2 2478 1  |-  ( F  Fn  A  ->  ( E. x  e.  ( `' F " ( _V 
\  { Z }
) ) ph  <->  E. x  e.  A  ( ( F `  x )  =/=  Z  /\  ph )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2146    =/= wne 2345   E.wrex 2454   _Vcvv 2735    \ cdif 3124   {csn 3589   `'ccnv 4619   "cima 4623    Fn wfn 5203   ` cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator