ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemlub Unicode version

Theorem dedekindeulemlub 13392
Description: Lemma for dedekindeu 13395. The set L has a least upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
Hypotheses
Ref Expression
dedekindeu.lss  |-  ( ph  ->  L  C_  RR )
dedekindeu.uss  |-  ( ph  ->  U  C_  RR )
dedekindeu.lm  |-  ( ph  ->  E. q  e.  RR  q  e.  L )
dedekindeu.um  |-  ( ph  ->  E. r  e.  RR  r  e.  U )
dedekindeu.lr  |-  ( ph  ->  A. q  e.  RR  ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
dedekindeu.ur  |-  ( ph  ->  A. r  e.  RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
dedekindeu.disj  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
dedekindeu.loc  |-  ( ph  ->  A. q  e.  RR  A. r  e.  RR  (
q  <  r  ->  ( q  e.  L  \/  r  e.  U )
) )
Assertion
Ref Expression
dedekindeulemlub  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  L  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  L  y  <  z ) ) )
Distinct variable groups:    L, q, r, x, y, z    U, q, r, y, z    ph, q,
r, x, y, z
Allowed substitution hint:    U( x)

Proof of Theorem dedekindeulemlub
StepHypRef Expression
1 dedekindeu.lss . 2  |-  ( ph  ->  L  C_  RR )
2 dedekindeu.lm . . 3  |-  ( ph  ->  E. q  e.  RR  q  e.  L )
3 eleq1w 2231 . . . . 5  |-  ( q  =  x  ->  (
q  e.  L  <->  x  e.  L ) )
43cbvrexv 2697 . . . 4  |-  ( E. q  e.  RR  q  e.  L  <->  E. x  e.  RR  x  e.  L )
5 rexex 2516 . . . 4  |-  ( E. x  e.  RR  x  e.  L  ->  E. x  x  e.  L )
64, 5sylbi 120 . . 3  |-  ( E. q  e.  RR  q  e.  L  ->  E. x  x  e.  L )
72, 6syl 14 . 2  |-  ( ph  ->  E. x  x  e.  L )
8 dedekindeu.uss . . 3  |-  ( ph  ->  U  C_  RR )
9 dedekindeu.um . . 3  |-  ( ph  ->  E. r  e.  RR  r  e.  U )
10 dedekindeu.lr . . 3  |-  ( ph  ->  A. q  e.  RR  ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
11 dedekindeu.ur . . 3  |-  ( ph  ->  A. r  e.  RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
12 dedekindeu.disj . . 3  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
13 dedekindeu.loc . . 3  |-  ( ph  ->  A. q  e.  RR  A. r  e.  RR  (
q  <  r  ->  ( q  e.  L  \/  r  e.  U )
) )
141, 8, 2, 9, 10, 11, 12, 13dedekindeulemub 13390 . 2  |-  ( ph  ->  E. x  e.  RR  A. y  e.  L  y  <  x )
151, 8, 2, 9, 10, 11, 12, 13dedekindeulemloc 13391 . 2  |-  ( ph  ->  A. x  e.  RR  A. y  e.  RR  (
x  <  y  ->  ( E. z  e.  L  x  <  z  \/  A. z  e.  L  z  <  y ) ) )
16 axsuploc 7992 . 2  |-  ( ( ( L  C_  RR  /\ 
E. x  x  e.  L )  /\  ( E. x  e.  RR  A. y  e.  L  y  <  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  < 
y  ->  ( E. z  e.  L  x  <  z  \/  A. z  e.  L  z  <  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  L  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  L  y  <  z ) ) )
171, 7, 14, 15, 16syl22anc 1234 1  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  L  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  L  y  <  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   E.wrex 2449    i^i cin 3120    C_ wss 3121   (/)c0 3414   class class class wbr 3989   RRcr 7773    < clt 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltwlin 7887  ax-pre-suploc 7895
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960
This theorem is referenced by:  dedekindeulemlu  13393
  Copyright terms: Public domain W3C validator