ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemlub Unicode version

Theorem dedekindeulemlub 15294
Description: Lemma for dedekindeu 15297. The set L has a least upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
Hypotheses
Ref Expression
dedekindeu.lss  |-  ( ph  ->  L  C_  RR )
dedekindeu.uss  |-  ( ph  ->  U  C_  RR )
dedekindeu.lm  |-  ( ph  ->  E. q  e.  RR  q  e.  L )
dedekindeu.um  |-  ( ph  ->  E. r  e.  RR  r  e.  U )
dedekindeu.lr  |-  ( ph  ->  A. q  e.  RR  ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
dedekindeu.ur  |-  ( ph  ->  A. r  e.  RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
dedekindeu.disj  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
dedekindeu.loc  |-  ( ph  ->  A. q  e.  RR  A. r  e.  RR  (
q  <  r  ->  ( q  e.  L  \/  r  e.  U )
) )
Assertion
Ref Expression
dedekindeulemlub  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  L  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  L  y  <  z ) ) )
Distinct variable groups:    L, q, r, x, y, z    U, q, r, y, z    ph, q,
r, x, y, z
Allowed substitution hint:    U( x)

Proof of Theorem dedekindeulemlub
StepHypRef Expression
1 dedekindeu.lss . 2  |-  ( ph  ->  L  C_  RR )
2 dedekindeu.lm . . 3  |-  ( ph  ->  E. q  e.  RR  q  e.  L )
3 eleq1w 2290 . . . . 5  |-  ( q  =  x  ->  (
q  e.  L  <->  x  e.  L ) )
43cbvrexv 2766 . . . 4  |-  ( E. q  e.  RR  q  e.  L  <->  E. x  e.  RR  x  e.  L )
5 rexex 2576 . . . 4  |-  ( E. x  e.  RR  x  e.  L  ->  E. x  x  e.  L )
64, 5sylbi 121 . . 3  |-  ( E. q  e.  RR  q  e.  L  ->  E. x  x  e.  L )
72, 6syl 14 . 2  |-  ( ph  ->  E. x  x  e.  L )
8 dedekindeu.uss . . 3  |-  ( ph  ->  U  C_  RR )
9 dedekindeu.um . . 3  |-  ( ph  ->  E. r  e.  RR  r  e.  U )
10 dedekindeu.lr . . 3  |-  ( ph  ->  A. q  e.  RR  ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
11 dedekindeu.ur . . 3  |-  ( ph  ->  A. r  e.  RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
12 dedekindeu.disj . . 3  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
13 dedekindeu.loc . . 3  |-  ( ph  ->  A. q  e.  RR  A. r  e.  RR  (
q  <  r  ->  ( q  e.  L  \/  r  e.  U )
) )
141, 8, 2, 9, 10, 11, 12, 13dedekindeulemub 15292 . 2  |-  ( ph  ->  E. x  e.  RR  A. y  e.  L  y  <  x )
151, 8, 2, 9, 10, 11, 12, 13dedekindeulemloc 15293 . 2  |-  ( ph  ->  A. x  e.  RR  A. y  e.  RR  (
x  <  y  ->  ( E. z  e.  L  x  <  z  \/  A. z  e.  L  z  <  y ) ) )
16 axsuploc 8219 . 2  |-  ( ( ( L  C_  RR  /\ 
E. x  x  e.  L )  /\  ( E. x  e.  RR  A. y  e.  L  y  <  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  < 
y  ->  ( E. z  e.  L  x  <  z  \/  A. z  e.  L  z  <  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  L  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  L  y  <  z ) ) )
171, 7, 14, 15, 16syl22anc 1272 1  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  L  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  L  y  <  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509    i^i cin 3196    C_ wss 3197   (/)c0 3491   class class class wbr 4083   RRcr 7998    < clt 8181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltwlin 8112  ax-pre-suploc 8120
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187
This theorem is referenced by:  dedekindeulemlu  15295
  Copyright terms: Public domain W3C validator