ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpml Unicode version

Theorem genpml 7630
Description: The lower cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
genpelvl.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
Assertion
Ref Expression
genpml  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. q  e.  Q.  q  e.  ( 1st `  ( A F B ) ) )
Distinct variable groups:    x, y, z, w, v, q, A   
x, B, y, z, w, v, q    x, G, y, z, w, v, q    F, q
Allowed substitution hints:    F( x, y, z, w, v)

Proof of Theorem genpml
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7588 . . . 4  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prml 7590 . . . 4  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. f  e.  Q.  f  e.  ( 1st `  A ) )
3 rexex 2552 . . . 4  |-  ( E. f  e.  Q.  f  e.  ( 1st `  A
)  ->  E. f 
f  e.  ( 1st `  A ) )
41, 2, 33syl 17 . . 3  |-  ( A  e.  P.  ->  E. f 
f  e.  ( 1st `  A ) )
54adantr 276 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. f  f  e.  ( 1st `  A
) )
6 prop 7588 . . . . 5  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
7 prml 7590 . . . . 5  |-  ( <.
( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  ->  E. g  e.  Q.  g  e.  ( 1st `  B ) )
8 rexex 2552 . . . . 5  |-  ( E. g  e.  Q.  g  e.  ( 1st `  B
)  ->  E. g 
g  e.  ( 1st `  B ) )
96, 7, 83syl 17 . . . 4  |-  ( B  e.  P.  ->  E. g 
g  e.  ( 1st `  B ) )
109ad2antlr 489 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  f  e.  ( 1st `  A ) )  ->  E. g  g  e.  ( 1st `  B
) )
11 genpelvl.1 . . . . . . 7  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
12 genpelvl.2 . . . . . . 7  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
1311, 12genpprecll 7627 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( f  e.  ( 1st `  A
)  /\  g  e.  ( 1st `  B ) )  ->  ( f G g )  e.  ( 1st `  ( A F B ) ) ) )
1413imp 124 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  ( 1st `  A )  /\  g  e.  ( 1st `  B ) ) )  ->  (
f G g )  e.  ( 1st `  ( A F B ) ) )
15 elprnql 7594 . . . . . . . . . 10  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
f  e.  Q. )
161, 15sylan 283 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
f  e.  Q. )
17 elprnql 7594 . . . . . . . . . 10  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  g  e.  ( 1st `  B ) )  -> 
g  e.  Q. )
186, 17sylan 283 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  g  e.  ( 1st `  B ) )  -> 
g  e.  Q. )
1916, 18anim12i 338 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  g  e.  ( 1st `  B ) ) )  ->  ( f  e. 
Q.  /\  g  e.  Q. ) )
2019an4s 588 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  ( 1st `  A )  /\  g  e.  ( 1st `  B ) ) )  ->  (
f  e.  Q.  /\  g  e.  Q. )
)
2112caovcl 6101 . . . . . . 7  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f G g )  e.  Q. )
2220, 21syl 14 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  ( 1st `  A )  /\  g  e.  ( 1st `  B ) ) )  ->  (
f G g )  e.  Q. )
23 simpr 110 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
f  e.  ( 1st `  A )  /\  g  e.  ( 1st `  B
) ) )  /\  q  =  ( f G g ) )  ->  q  =  ( f G g ) )
2423eleq1d 2274 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
f  e.  ( 1st `  A )  /\  g  e.  ( 1st `  B
) ) )  /\  q  =  ( f G g ) )  ->  ( q  e.  ( 1st `  ( A F B ) )  <-> 
( f G g )  e.  ( 1st `  ( A F B ) ) ) )
2522, 24rspcedv 2881 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  ( 1st `  A )  /\  g  e.  ( 1st `  B ) ) )  ->  (
( f G g )  e.  ( 1st `  ( A F B ) )  ->  E. q  e.  Q.  q  e.  ( 1st `  ( A F B ) ) ) )
2614, 25mpd 13 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  ( 1st `  A )  /\  g  e.  ( 1st `  B ) ) )  ->  E. q  e.  Q.  q  e.  ( 1st `  ( A F B ) ) )
2726anassrs 400 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  f  e.  ( 1st `  A
) )  /\  g  e.  ( 1st `  B
) )  ->  E. q  e.  Q.  q  e.  ( 1st `  ( A F B ) ) )
2810, 27exlimddv 1922 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  f  e.  ( 1st `  A ) )  ->  E. q  e.  Q.  q  e.  ( 1st `  ( A F B ) ) )
295, 28exlimddv 1922 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. q  e.  Q.  q  e.  ( 1st `  ( A F B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   E.wrex 2485   {crab 2488   <.cop 3636   ` cfv 5271  (class class class)co 5944    e. cmpo 5946   1stc1st 6224   2ndc2nd 6225   Q.cnq 7393   P.cnp 7404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-qs 6626  df-ni 7417  df-nqqs 7461  df-inp 7579
This theorem is referenced by:  addclpr  7650  mulclpr  7685
  Copyright terms: Public domain W3C validator