| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > genpml | Unicode version | ||
| Description: The lower cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Oct-2019.) |
| Ref | Expression |
|---|---|
| genpelvl.1 |
|
| genpelvl.2 |
|
| Ref | Expression |
|---|---|
| genpml |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prop 7662 |
. . . 4
| |
| 2 | prml 7664 |
. . . 4
| |
| 3 | rexex 2576 |
. . . 4
| |
| 4 | 1, 2, 3 | 3syl 17 |
. . 3
|
| 5 | 4 | adantr 276 |
. 2
|
| 6 | prop 7662 |
. . . . 5
| |
| 7 | prml 7664 |
. . . . 5
| |
| 8 | rexex 2576 |
. . . . 5
| |
| 9 | 6, 7, 8 | 3syl 17 |
. . . 4
|
| 10 | 9 | ad2antlr 489 |
. . 3
|
| 11 | genpelvl.1 |
. . . . . . 7
| |
| 12 | genpelvl.2 |
. . . . . . 7
| |
| 13 | 11, 12 | genpprecll 7701 |
. . . . . 6
|
| 14 | 13 | imp 124 |
. . . . 5
|
| 15 | elprnql 7668 |
. . . . . . . . . 10
| |
| 16 | 1, 15 | sylan 283 |
. . . . . . . . 9
|
| 17 | elprnql 7668 |
. . . . . . . . . 10
| |
| 18 | 6, 17 | sylan 283 |
. . . . . . . . 9
|
| 19 | 16, 18 | anim12i 338 |
. . . . . . . 8
|
| 20 | 19 | an4s 590 |
. . . . . . 7
|
| 21 | 12 | caovcl 6160 |
. . . . . . 7
|
| 22 | 20, 21 | syl 14 |
. . . . . 6
|
| 23 | simpr 110 |
. . . . . . 7
| |
| 24 | 23 | eleq1d 2298 |
. . . . . 6
|
| 25 | 22, 24 | rspcedv 2911 |
. . . . 5
|
| 26 | 14, 25 | mpd 13 |
. . . 4
|
| 27 | 26 | anassrs 400 |
. . 3
|
| 28 | 10, 27 | exlimddv 1945 |
. 2
|
| 29 | 5, 28 | exlimddv 1945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-qs 6686 df-ni 7491 df-nqqs 7535 df-inp 7653 |
| This theorem is referenced by: addclpr 7724 mulclpr 7759 |
| Copyright terms: Public domain | W3C validator |