ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssimaex Unicode version

Theorem ssimaex 5694
Description: The existence of a subimage. (Contributed by NM, 8-Apr-2007.)
Hypothesis
Ref Expression
ssimaex.1  |-  A  e. 
_V
Assertion
Ref Expression
ssimaex  |-  ( ( Fun  F  /\  B  C_  ( F " A
) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem ssimaex
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmres 5025 . . . . 5  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
21imaeq2i 5065 . . . 4  |-  ( F
" dom  ( F  |`  A ) )  =  ( F " ( A  i^i  dom  F )
)
3 imadmres 5220 . . . 4  |-  ( F
" dom  ( F  |`  A ) )  =  ( F " A
)
42, 3eqtr3i 2252 . . 3  |-  ( F
" ( A  i^i  dom 
F ) )  =  ( F " A
)
54sseq2i 3251 . 2  |-  ( B 
C_  ( F "
( A  i^i  dom  F ) )  <->  B  C_  ( F " A ) )
6 ssrab2 3309 . . . 4  |-  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  C_  ( A  i^i  dom  F
)
7 ssel2 3219 . . . . . . . . 9  |-  ( ( B  C_  ( F " ( A  i^i  dom  F ) )  /\  z  e.  B )  ->  z  e.  ( F " ( A  i^i  dom  F )
) )
87adantll 476 . . . . . . . 8  |-  ( ( ( Fun  F  /\  B  C_  ( F "
( A  i^i  dom  F ) ) )  /\  z  e.  B )  ->  z  e.  ( F
" ( A  i^i  dom 
F ) ) )
9 fvelima 5684 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  z  e.  ( F " ( A  i^i  dom  F )
) )  ->  E. w  e.  ( A  i^i  dom  F ) ( F `  w )  =  z )
109ex 115 . . . . . . . . . . 11  |-  ( Fun 
F  ->  ( z  e.  ( F " ( A  i^i  dom  F )
)  ->  E. w  e.  ( A  i^i  dom  F ) ( F `  w )  =  z ) )
1110adantr 276 . . . . . . . . . 10  |-  ( ( Fun  F  /\  z  e.  B )  ->  (
z  e.  ( F
" ( A  i^i  dom 
F ) )  ->  E. w  e.  ( A  i^i  dom  F )
( F `  w
)  =  z ) )
12 eleq1a 2301 . . . . . . . . . . . . . . . 16  |-  ( z  e.  B  ->  (
( F `  w
)  =  z  -> 
( F `  w
)  e.  B ) )
1312anim2d 337 . . . . . . . . . . . . . . 15  |-  ( z  e.  B  ->  (
( w  e.  ( A  i^i  dom  F
)  /\  ( F `  w )  =  z )  ->  ( w  e.  ( A  i^i  dom  F )  /\  ( F `
 w )  e.  B ) ) )
14 fveq2 5626 . . . . . . . . . . . . . . . . 17  |-  ( y  =  w  ->  ( F `  y )  =  ( F `  w ) )
1514eleq1d 2298 . . . . . . . . . . . . . . . 16  |-  ( y  =  w  ->  (
( F `  y
)  e.  B  <->  ( F `  w )  e.  B
) )
1615elrab 2959 . . . . . . . . . . . . . . 15  |-  ( w  e.  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  <->  ( w  e.  ( A  i^i  dom  F )  /\  ( F `
 w )  e.  B ) )
1713, 16imbitrrdi 162 . . . . . . . . . . . . . 14  |-  ( z  e.  B  ->  (
( w  e.  ( A  i^i  dom  F
)  /\  ( F `  w )  =  z )  ->  w  e.  { y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } ) )
18 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  ( A  i^i  dom  F )  /\  ( F `  w
)  =  z )  ->  ( F `  w )  =  z )
1918a1i 9 . . . . . . . . . . . . . 14  |-  ( z  e.  B  ->  (
( w  e.  ( A  i^i  dom  F
)  /\  ( F `  w )  =  z )  ->  ( F `  w )  =  z ) )
2017, 19jcad 307 . . . . . . . . . . . . 13  |-  ( z  e.  B  ->  (
( w  e.  ( A  i^i  dom  F
)  /\  ( F `  w )  =  z )  ->  ( w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  /\  ( F `  w )  =  z ) ) )
2120reximdv2 2629 . . . . . . . . . . . 12  |-  ( z  e.  B  ->  ( E. w  e.  ( A  i^i  dom  F )
( F `  w
)  =  z  ->  E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z ) )
2221adantl 277 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  z  e.  B )  ->  ( E. w  e.  ( A  i^i  dom  F )
( F `  w
)  =  z  ->  E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z ) )
23 funfn 5347 . . . . . . . . . . . . 13  |-  ( Fun 
F  <->  F  Fn  dom  F )
24 inss2 3425 . . . . . . . . . . . . . . 15  |-  ( A  i^i  dom  F )  C_ 
dom  F
256, 24sstri 3233 . . . . . . . . . . . . . 14  |-  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  C_  dom  F
26 fvelimab 5689 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  dom  F  /\  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  C_  dom  F )  ->  ( z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } )  <->  E. w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  ( F `
 w )  =  z ) )
2725, 26mpan2 425 . . . . . . . . . . . . 13  |-  ( F  Fn  dom  F  -> 
( z  e.  ( F " { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B } )  <->  E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z ) )
2823, 27sylbi 121 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } )  <->  E. w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  ( F `
 w )  =  z ) )
2928adantr 276 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  z  e.  B )  ->  (
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } )  <->  E. w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  ( F `
 w )  =  z ) )
3022, 29sylibrd 169 . . . . . . . . . 10  |-  ( ( Fun  F  /\  z  e.  B )  ->  ( E. w  e.  ( A  i^i  dom  F )
( F `  w
)  =  z  -> 
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) ) )
3111, 30syld 45 . . . . . . . . 9  |-  ( ( Fun  F  /\  z  e.  B )  ->  (
z  e.  ( F
" ( A  i^i  dom 
F ) )  -> 
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) ) )
3231adantlr 477 . . . . . . . 8  |-  ( ( ( Fun  F  /\  B  C_  ( F "
( A  i^i  dom  F ) ) )  /\  z  e.  B )  ->  ( z  e.  ( F " ( A  i^i  dom  F )
)  ->  z  e.  ( F " { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B } ) ) )
338, 32mpd 13 . . . . . . 7  |-  ( ( ( Fun  F  /\  B  C_  ( F "
( A  i^i  dom  F ) ) )  /\  z  e.  B )  ->  z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) )
3433ex 115 . . . . . 6  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  (
z  e.  B  -> 
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) ) )
35 fvelima 5684 . . . . . . . . 9  |-  ( ( Fun  F  /\  z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } ) )  ->  E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z )
3635ex 115 . . . . . . . 8  |-  ( Fun 
F  ->  ( z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } )  ->  E. w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  ( F `
 w )  =  z ) )
37 eleq1 2292 . . . . . . . . . . . 12  |-  ( ( F `  w )  =  z  ->  (
( F `  w
)  e.  B  <->  z  e.  B ) )
3837biimpcd 159 . . . . . . . . . . 11  |-  ( ( F `  w )  e.  B  ->  (
( F `  w
)  =  z  -> 
z  e.  B ) )
3938adantl 277 . . . . . . . . . 10  |-  ( ( w  e.  ( A  i^i  dom  F )  /\  ( F `  w
)  e.  B )  ->  ( ( F `
 w )  =  z  ->  z  e.  B ) )
4016, 39sylbi 121 . . . . . . . . 9  |-  ( w  e.  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  (
( F `  w
)  =  z  -> 
z  e.  B ) )
4140rexlimiv 2642 . . . . . . . 8  |-  ( E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z  ->  z  e.  B )
4236, 41syl6 33 . . . . . . 7  |-  ( Fun 
F  ->  ( z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } )  ->  z  e.  B ) )
4342adantr 276 . . . . . 6  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  (
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } )  -> 
z  e.  B ) )
4434, 43impbid 129 . . . . 5  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  (
z  e.  B  <->  z  e.  ( F " { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B } ) ) )
4544eqrdv 2227 . . . 4  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  B  =  ( F " { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B } ) )
46 ssimaex.1 . . . . . . 7  |-  A  e. 
_V
4746inex1 4217 . . . . . 6  |-  ( A  i^i  dom  F )  e.  _V
4847rabex 4227 . . . . 5  |-  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  e.  _V
49 sseq1 3247 . . . . . 6  |-  ( x  =  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  (
x  C_  ( A  i^i  dom  F )  <->  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  C_  ( A  i^i  dom  F )
) )
50 imaeq2 5063 . . . . . . 7  |-  ( x  =  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  ( F " x )  =  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } ) )
5150eqeq2d 2241 . . . . . 6  |-  ( x  =  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  ( B  =  ( F " x )  <->  B  =  ( F " { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B } ) ) )
5249, 51anbi12d 473 . . . . 5  |-  ( x  =  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  (
( x  C_  ( A  i^i  dom  F )  /\  B  =  ( F " x ) )  <-> 
( { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  C_  ( A  i^i  dom  F )  /\  B  =  ( F " { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) ) ) )
5348, 52spcev 2898 . . . 4  |-  ( ( { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  C_  ( A  i^i  dom  F )  /\  B  =  ( F " { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) )  ->  E. x ( x 
C_  ( A  i^i  dom 
F )  /\  B  =  ( F "
x ) ) )
546, 45, 53sylancr 414 . . 3  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  E. x
( x  C_  ( A  i^i  dom  F )  /\  B  =  ( F " x ) ) )
55 inss1 3424 . . . . . 6  |-  ( A  i^i  dom  F )  C_  A
56 sstr 3232 . . . . . 6  |-  ( ( x  C_  ( A  i^i  dom  F )  /\  ( A  i^i  dom  F
)  C_  A )  ->  x  C_  A )
5755, 56mpan2 425 . . . . 5  |-  ( x 
C_  ( A  i^i  dom 
F )  ->  x  C_  A )
5857anim1i 340 . . . 4  |-  ( ( x  C_  ( A  i^i  dom  F )  /\  B  =  ( F " x ) )  -> 
( x  C_  A  /\  B  =  ( F " x ) ) )
5958eximi 1646 . . 3  |-  ( E. x ( x  C_  ( A  i^i  dom  F
)  /\  B  =  ( F " x ) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
6054, 59syl 14 . 2  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
615, 60sylan2br 288 1  |-  ( ( Fun  F  /\  B  C_  ( F " A
) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   E.wrex 2509   {crab 2512   _Vcvv 2799    i^i cin 3196    C_ wss 3197   dom cdm 4718    |` cres 4720   "cima 4721   Fun wfun 5311    Fn wfn 5312   ` cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325
This theorem is referenced by:  ssimaexg  5695
  Copyright terms: Public domain W3C validator