ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.2uz Unicode version

Theorem r19.2uz 11504
Description: A version of r19.2m 3578 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
rexuz3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
r19.2uz  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  ->  E. k  e.  Z  ph )
Distinct variable groups:    j, M    ph, j    j, k, Z
Allowed substitution hints:    ph( k)    M( k)

Proof of Theorem r19.2uz
StepHypRef Expression
1 eluzelz 9731 . . . . . 6  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
2 uzid 9736 . . . . . 6  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
3 elex2 2816 . . . . . 6  |-  ( j  e.  ( ZZ>= `  j
)  ->  E. k 
k  e.  ( ZZ>= `  j ) )
41, 2, 33syl 17 . . . . 5  |-  ( j  e.  ( ZZ>= `  M
)  ->  E. k 
k  e.  ( ZZ>= `  j ) )
5 rexuz3.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
64, 5eleq2s 2324 . . . 4  |-  ( j  e.  Z  ->  E. k 
k  e.  ( ZZ>= `  j ) )
7 r19.2m 3578 . . . 4  |-  ( ( E. k  k  e.  ( ZZ>= `  j )  /\  A. k  e.  (
ZZ>= `  j ) ph )  ->  E. k  e.  (
ZZ>= `  j ) ph )
86, 7sylan 283 . . 3  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  E. k  e.  (
ZZ>= `  j ) ph )
95uztrn2 9740 . . . . . . 7  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
109ex 115 . . . . . 6  |-  ( j  e.  Z  ->  (
k  e.  ( ZZ>= `  j )  ->  k  e.  Z ) )
1110anim1d 336 . . . . 5  |-  ( j  e.  Z  ->  (
( k  e.  (
ZZ>= `  j )  /\  ph )  ->  ( k  e.  Z  /\  ph )
) )
1211reximdv2 2629 . . . 4  |-  ( j  e.  Z  ->  ( E. k  e.  ( ZZ>=
`  j ) ph  ->  E. k  e.  Z  ph ) )
1312imp 124 . . 3  |-  ( ( j  e.  Z  /\  E. k  e.  ( ZZ>= `  j ) ph )  ->  E. k  e.  Z  ph )
148, 13syldan 282 . 2  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  E. k  e.  Z  ph )
1514rexlimiva 2643 1  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  ->  E. k  e.  Z  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509   ` cfv 5318   ZZcz 9446   ZZ>=cuz 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltirr 8111  ax-pre-ltwlin 8112
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-neg 8320  df-z 9447  df-uz 9723
This theorem is referenced by:  recvguniq  11506  climge0  11836
  Copyright terms: Public domain W3C validator