ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.2uz Unicode version

Theorem r19.2uz 10904
Description: A version of r19.2m 3481 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
rexuz3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
r19.2uz  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  ->  E. k  e.  Z  ph )
Distinct variable groups:    j, M    ph, j    j, k, Z
Allowed substitution hints:    ph( k)    M( k)

Proof of Theorem r19.2uz
StepHypRef Expression
1 eluzelz 9453 . . . . . 6  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
2 uzid 9458 . . . . . 6  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
3 elex2 2728 . . . . . 6  |-  ( j  e.  ( ZZ>= `  j
)  ->  E. k 
k  e.  ( ZZ>= `  j ) )
41, 2, 33syl 17 . . . . 5  |-  ( j  e.  ( ZZ>= `  M
)  ->  E. k 
k  e.  ( ZZ>= `  j ) )
5 rexuz3.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
64, 5eleq2s 2252 . . . 4  |-  ( j  e.  Z  ->  E. k 
k  e.  ( ZZ>= `  j ) )
7 r19.2m 3481 . . . 4  |-  ( ( E. k  k  e.  ( ZZ>= `  j )  /\  A. k  e.  (
ZZ>= `  j ) ph )  ->  E. k  e.  (
ZZ>= `  j ) ph )
86, 7sylan 281 . . 3  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  E. k  e.  (
ZZ>= `  j ) ph )
95uztrn2 9461 . . . . . . 7  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
109ex 114 . . . . . 6  |-  ( j  e.  Z  ->  (
k  e.  ( ZZ>= `  j )  ->  k  e.  Z ) )
1110anim1d 334 . . . . 5  |-  ( j  e.  Z  ->  (
( k  e.  (
ZZ>= `  j )  /\  ph )  ->  ( k  e.  Z  /\  ph )
) )
1211reximdv2 2556 . . . 4  |-  ( j  e.  Z  ->  ( E. k  e.  ( ZZ>=
`  j ) ph  ->  E. k  e.  Z  ph ) )
1312imp 123 . . 3  |-  ( ( j  e.  Z  /\  E. k  e.  ( ZZ>= `  j ) ph )  ->  E. k  e.  Z  ph )
148, 13syldan 280 . 2  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  E. k  e.  Z  ph )
1514rexlimiva 2569 1  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  ->  E. k  e.  Z  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335   E.wex 1472    e. wcel 2128   A.wral 2435   E.wrex 2436   ` cfv 5172   ZZcz 9172   ZZ>=cuz 9444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-cnex 7825  ax-resscn 7826  ax-pre-ltirr 7846  ax-pre-ltwlin 7847
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4028  df-mpt 4029  df-id 4255  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-fv 5180  df-ov 5829  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-neg 8053  df-z 9173  df-uz 9445
This theorem is referenced by:  recvguniq  10906  climge0  11233
  Copyright terms: Public domain W3C validator