ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ico0 Unicode version

Theorem ico0 9990
Description: An empty open interval of extended reals. (Contributed by FL, 30-May-2014.)
Assertion
Ref Expression
ico0  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,) B
)  =  (/)  <->  B  <_  A ) )

Proof of Theorem ico0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 icoval 9653 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A [,) B )  =  { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) } )
21eqeq1d 2124 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,) B
)  =  (/)  <->  { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/) ) )
3 xrlelttr 9540 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  x  e.  RR*  /\  B  e. 
RR* )  ->  (
( A  <_  x  /\  x  <  B )  ->  A  <  B
) )
433com23 1170 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* )  ->  (
( A  <_  x  /\  x  <  B )  ->  A  <  B
) )
543expa 1164 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  RR* )  ->  ( ( A  <_  x  /\  x  <  B
)  ->  A  <  B ) )
65rexlimdva 2524 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <_  x  /\  x  <  B )  ->  A  <  B ) )
7 qbtwnxr 9986 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
8 qre 9369 . . . . . . . . . . . 12  |-  ( x  e.  QQ  ->  x  e.  RR )
98rexrd 7779 . . . . . . . . . . 11  |-  ( x  e.  QQ  ->  x  e.  RR* )
109a1i 9 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( x  e.  QQ  ->  x  e.  RR* )
)
11 simpr1 970 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  ->  A  e.  RR* )
12 simpl 108 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  ->  x  e.  RR* )
13 xrltle 9535 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  ( A  <  x  ->  A  <_  x ) )
1411, 12, 13syl2anc 406 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( A  <  x  ->  A  <_  x )
)
1514anim1d 332 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( ( A  < 
x  /\  x  <  B )  ->  ( A  <_  x  /\  x  < 
B ) ) )
1610, 15anim12d 331 . . . . . . . . . . . 12  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( ( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  -> 
( x  e.  RR*  /\  ( A  <_  x  /\  x  <  B ) ) ) )
1716ex 114 . . . . . . . . . . 11  |-  ( x  e.  RR*  ->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e.  RR*  /\  ( A  <_  x  /\  x  <  B ) ) ) ) )
189, 17syl 14 . . . . . . . . . 10  |-  ( x  e.  QQ  ->  (
( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  ->  (
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e.  RR*  /\  ( A  <_  x  /\  x  <  B ) ) ) ) )
1918adantr 272 . . . . . . . . 9  |-  ( ( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( ( A  e.  RR*  /\  B  e. 
RR*  /\  A  <  B )  ->  ( (
x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e. 
RR*  /\  ( A  <_  x  /\  x  < 
B ) ) ) ) )
2019pm2.43b 52 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e.  RR*  /\  ( A  <_  x  /\  x  <  B ) ) ) )
2120reximdv2 2506 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  ( E. x  e.  QQ  ( A  <  x  /\  x  <  B )  ->  E. x  e.  RR*  ( A  <_  x  /\  x  <  B ) ) )
227, 21mpd 13 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  RR*  ( A  <_  x  /\  x  <  B
) )
23223expia 1166 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  E. x  e.  RR*  ( A  <_  x  /\  x  <  B
) ) )
246, 23impbid 128 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <_  x  /\  x  <  B )  <->  A  <  B ) )
2524notbid 639 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  E. x  e.  RR*  ( A  <_  x  /\  x  <  B )  <->  -.  A  <  B ) )
26 rabeq0 3360 . . . . 5  |-  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/)  <->  A. x  e.  RR*  -.  ( A  <_  x  /\  x  <  B ) )
27 ralnex 2401 . . . . 5  |-  ( A. x  e.  RR*  -.  ( A  <_  x  /\  x  <  B )  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <  B
) )
2826, 27bitri 183 . . . 4  |-  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/)  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <  B
) )
2928a1i 9 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/)  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <  B
) ) )
30 xrlenlt 7793 . . . 4  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  ( B  <_  A  <->  -.  A  <  B ) )
3130ancoms 266 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <_  A  <->  -.  A  <  B ) )
3225, 29, 313bitr4d 219 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/)  <->  B  <_  A ) )
332, 32bitrd 187 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,) B
)  =  (/)  <->  B  <_  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 945    = wceq 1314    e. wcel 1463   A.wral 2391   E.wrex 2392   {crab 2395   (/)c0 3331   class class class wbr 3897  (class class class)co 5740   RR*cxr 7763    < clt 7764    <_ cle 7765   QQcq 9363   [,)cico 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-po 4186  df-iso 4187  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8396  df-inn 8681  df-2 8739  df-n0 8932  df-z 9009  df-uz 9279  df-q 9364  df-rp 9394  df-ico 9628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator