ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ico0 Unicode version

Theorem ico0 10481
Description: An empty open interval of extended reals. (Contributed by FL, 30-May-2014.)
Assertion
Ref Expression
ico0  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,) B
)  =  (/)  <->  B  <_  A ) )

Proof of Theorem ico0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 icoval 10115 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A [,) B )  =  { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) } )
21eqeq1d 2238 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,) B
)  =  (/)  <->  { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/) ) )
3 xrlelttr 10002 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  x  e.  RR*  /\  B  e. 
RR* )  ->  (
( A  <_  x  /\  x  <  B )  ->  A  <  B
) )
433com23 1233 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* )  ->  (
( A  <_  x  /\  x  <  B )  ->  A  <  B
) )
543expa 1227 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  RR* )  ->  ( ( A  <_  x  /\  x  <  B
)  ->  A  <  B ) )
65rexlimdva 2648 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <_  x  /\  x  <  B )  ->  A  <  B ) )
7 qbtwnxr 10477 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
8 qre 9820 . . . . . . . . . . . 12  |-  ( x  e.  QQ  ->  x  e.  RR )
98rexrd 8196 . . . . . . . . . . 11  |-  ( x  e.  QQ  ->  x  e.  RR* )
109a1i 9 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( x  e.  QQ  ->  x  e.  RR* )
)
11 simpr1 1027 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  ->  A  e.  RR* )
12 simpl 109 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  ->  x  e.  RR* )
13 xrltle 9994 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  ( A  <  x  ->  A  <_  x ) )
1411, 12, 13syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( A  <  x  ->  A  <_  x )
)
1514anim1d 336 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( ( A  < 
x  /\  x  <  B )  ->  ( A  <_  x  /\  x  < 
B ) ) )
1610, 15anim12d 335 . . . . . . . . . . . 12  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( ( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  -> 
( x  e.  RR*  /\  ( A  <_  x  /\  x  <  B ) ) ) )
1716ex 115 . . . . . . . . . . 11  |-  ( x  e.  RR*  ->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e.  RR*  /\  ( A  <_  x  /\  x  <  B ) ) ) ) )
189, 17syl 14 . . . . . . . . . 10  |-  ( x  e.  QQ  ->  (
( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  ->  (
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e.  RR*  /\  ( A  <_  x  /\  x  <  B ) ) ) ) )
1918adantr 276 . . . . . . . . 9  |-  ( ( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( ( A  e.  RR*  /\  B  e. 
RR*  /\  A  <  B )  ->  ( (
x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e. 
RR*  /\  ( A  <_  x  /\  x  < 
B ) ) ) ) )
2019pm2.43b 52 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e.  RR*  /\  ( A  <_  x  /\  x  <  B ) ) ) )
2120reximdv2 2629 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  ( E. x  e.  QQ  ( A  <  x  /\  x  <  B )  ->  E. x  e.  RR*  ( A  <_  x  /\  x  <  B ) ) )
227, 21mpd 13 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  RR*  ( A  <_  x  /\  x  <  B
) )
23223expia 1229 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  E. x  e.  RR*  ( A  <_  x  /\  x  <  B
) ) )
246, 23impbid 129 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <_  x  /\  x  <  B )  <->  A  <  B ) )
2524notbid 671 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  E. x  e.  RR*  ( A  <_  x  /\  x  <  B )  <->  -.  A  <  B ) )
26 rabeq0 3521 . . . . 5  |-  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/)  <->  A. x  e.  RR*  -.  ( A  <_  x  /\  x  <  B ) )
27 ralnex 2518 . . . . 5  |-  ( A. x  e.  RR*  -.  ( A  <_  x  /\  x  <  B )  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <  B
) )
2826, 27bitri 184 . . . 4  |-  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/)  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <  B
) )
2928a1i 9 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/)  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <  B
) ) )
30 xrlenlt 8211 . . . 4  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  ( B  <_  A  <->  -.  A  <  B ) )
3130ancoms 268 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <_  A  <->  -.  A  <  B ) )
3225, 29, 313bitr4d 220 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/)  <->  B  <_  A ) )
332, 32bitrd 188 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,) B
)  =  (/)  <->  B  <_  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   {crab 2512   (/)c0 3491   class class class wbr 4083  (class class class)co 6001   RR*cxr 8180    < clt 8181    <_ cle 8182   QQcq 9814   [,)cico 10086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-ico 10090
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator