ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ico0 Unicode version

Theorem ico0 10218
Description: An empty open interval of extended reals. (Contributed by FL, 30-May-2014.)
Assertion
Ref Expression
ico0  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,) B
)  =  (/)  <->  B  <_  A ) )

Proof of Theorem ico0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 icoval 9876 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A [,) B )  =  { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) } )
21eqeq1d 2179 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,) B
)  =  (/)  <->  { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/) ) )
3 xrlelttr 9763 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  x  e.  RR*  /\  B  e. 
RR* )  ->  (
( A  <_  x  /\  x  <  B )  ->  A  <  B
) )
433com23 1204 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* )  ->  (
( A  <_  x  /\  x  <  B )  ->  A  <  B
) )
543expa 1198 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  RR* )  ->  ( ( A  <_  x  /\  x  <  B
)  ->  A  <  B ) )
65rexlimdva 2587 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <_  x  /\  x  <  B )  ->  A  <  B ) )
7 qbtwnxr 10214 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
8 qre 9584 . . . . . . . . . . . 12  |-  ( x  e.  QQ  ->  x  e.  RR )
98rexrd 7969 . . . . . . . . . . 11  |-  ( x  e.  QQ  ->  x  e.  RR* )
109a1i 9 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( x  e.  QQ  ->  x  e.  RR* )
)
11 simpr1 998 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  ->  A  e.  RR* )
12 simpl 108 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  ->  x  e.  RR* )
13 xrltle 9755 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  ( A  <  x  ->  A  <_  x ) )
1411, 12, 13syl2anc 409 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( A  <  x  ->  A  <_  x )
)
1514anim1d 334 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( ( A  < 
x  /\  x  <  B )  ->  ( A  <_  x  /\  x  < 
B ) ) )
1610, 15anim12d 333 . . . . . . . . . . . 12  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( ( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  -> 
( x  e.  RR*  /\  ( A  <_  x  /\  x  <  B ) ) ) )
1716ex 114 . . . . . . . . . . 11  |-  ( x  e.  RR*  ->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e.  RR*  /\  ( A  <_  x  /\  x  <  B ) ) ) ) )
189, 17syl 14 . . . . . . . . . 10  |-  ( x  e.  QQ  ->  (
( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  ->  (
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e.  RR*  /\  ( A  <_  x  /\  x  <  B ) ) ) ) )
1918adantr 274 . . . . . . . . 9  |-  ( ( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( ( A  e.  RR*  /\  B  e. 
RR*  /\  A  <  B )  ->  ( (
x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e. 
RR*  /\  ( A  <_  x  /\  x  < 
B ) ) ) ) )
2019pm2.43b 52 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e.  RR*  /\  ( A  <_  x  /\  x  <  B ) ) ) )
2120reximdv2 2569 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  ( E. x  e.  QQ  ( A  <  x  /\  x  <  B )  ->  E. x  e.  RR*  ( A  <_  x  /\  x  <  B ) ) )
227, 21mpd 13 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  RR*  ( A  <_  x  /\  x  <  B
) )
23223expia 1200 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  E. x  e.  RR*  ( A  <_  x  /\  x  <  B
) ) )
246, 23impbid 128 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <_  x  /\  x  <  B )  <->  A  <  B ) )
2524notbid 662 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  E. x  e.  RR*  ( A  <_  x  /\  x  <  B )  <->  -.  A  <  B ) )
26 rabeq0 3444 . . . . 5  |-  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/)  <->  A. x  e.  RR*  -.  ( A  <_  x  /\  x  <  B ) )
27 ralnex 2458 . . . . 5  |-  ( A. x  e.  RR*  -.  ( A  <_  x  /\  x  <  B )  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <  B
) )
2826, 27bitri 183 . . . 4  |-  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/)  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <  B
) )
2928a1i 9 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/)  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <  B
) ) )
30 xrlenlt 7984 . . . 4  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  ( B  <_  A  <->  -.  A  <  B ) )
3130ancoms 266 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <_  A  <->  -.  A  <  B ) )
3225, 29, 313bitr4d 219 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/)  <->  B  <_  A ) )
332, 32bitrd 187 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,) B
)  =  (/)  <->  B  <_  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   {crab 2452   (/)c0 3414   class class class wbr 3989  (class class class)co 5853   RR*cxr 7953    < clt 7954    <_ cle 7955   QQcq 9578   [,)cico 9847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-ico 9851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator