ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  triun Unicode version

Theorem triun 3971
Description: The indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
triun  |-  ( A. x  e.  A  Tr  B  ->  Tr  U_ x  e.  A  B )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem triun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eliun 3756 . . . 4  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
2 r19.29 2520 . . . . 5  |-  ( ( A. x  e.  A  Tr  B  /\  E. x  e.  A  y  e.  B )  ->  E. x  e.  A  ( Tr  B  /\  y  e.  B
) )
3 nfcv 2235 . . . . . . 7  |-  F/_ x
y
4 nfiu1 3782 . . . . . . 7  |-  F/_ x U_ x  e.  A  B
53, 4nfss 3032 . . . . . 6  |-  F/ x  y  C_  U_ x  e.  A  B
6 trss 3967 . . . . . . . 8  |-  ( Tr  B  ->  ( y  e.  B  ->  y  C_  B ) )
76imp 123 . . . . . . 7  |-  ( ( Tr  B  /\  y  e.  B )  ->  y  C_  B )
8 ssiun2 3795 . . . . . . . 8  |-  ( x  e.  A  ->  B  C_ 
U_ x  e.  A  B )
9 sstr2 3046 . . . . . . . 8  |-  ( y 
C_  B  ->  ( B  C_  U_ x  e.  A  B  ->  y  C_ 
U_ x  e.  A  B ) )
108, 9syl5com 29 . . . . . . 7  |-  ( x  e.  A  ->  (
y  C_  B  ->  y 
C_  U_ x  e.  A  B ) )
117, 10syl5 32 . . . . . 6  |-  ( x  e.  A  ->  (
( Tr  B  /\  y  e.  B )  ->  y  C_  U_ x  e.  A  B ) )
125, 11rexlimi 2495 . . . . 5  |-  ( E. x  e.  A  ( Tr  B  /\  y  e.  B )  ->  y  C_ 
U_ x  e.  A  B )
132, 12syl 14 . . . 4  |-  ( ( A. x  e.  A  Tr  B  /\  E. x  e.  A  y  e.  B )  ->  y  C_ 
U_ x  e.  A  B )
141, 13sylan2b 282 . . 3  |-  ( ( A. x  e.  A  Tr  B  /\  y  e.  U_ x  e.  A  B )  ->  y  C_ 
U_ x  e.  A  B )
1514ralrimiva 2458 . 2  |-  ( A. x  e.  A  Tr  B  ->  A. y  e.  U_  x  e.  A  B
y  C_  U_ x  e.  A  B )
16 dftr3 3962 . 2  |-  ( Tr 
U_ x  e.  A  B 
<-> 
A. y  e.  U_  x  e.  A  B
y  C_  U_ x  e.  A  B )
1715, 16sylibr 133 1  |-  ( A. x  e.  A  Tr  B  ->  Tr  U_ x  e.  A  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1445   A.wral 2370   E.wrex 2371    C_ wss 3013   U_ciun 3752   Tr wtr 3958
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-in 3019  df-ss 3026  df-uni 3676  df-iun 3754  df-tr 3959
This theorem is referenced by:  truni  3972
  Copyright terms: Public domain W3C validator