ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  triun Unicode version

Theorem triun 4163
Description: The indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
triun  |-  ( A. x  e.  A  Tr  B  ->  Tr  U_ x  e.  A  B )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem triun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eliun 3937 . . . 4  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
2 r19.29 2644 . . . . 5  |-  ( ( A. x  e.  A  Tr  B  /\  E. x  e.  A  y  e.  B )  ->  E. x  e.  A  ( Tr  B  /\  y  e.  B
) )
3 nfcv 2349 . . . . . . 7  |-  F/_ x
y
4 nfiu1 3963 . . . . . . 7  |-  F/_ x U_ x  e.  A  B
53, 4nfss 3190 . . . . . 6  |-  F/ x  y  C_  U_ x  e.  A  B
6 trss 4159 . . . . . . . 8  |-  ( Tr  B  ->  ( y  e.  B  ->  y  C_  B ) )
76imp 124 . . . . . . 7  |-  ( ( Tr  B  /\  y  e.  B )  ->  y  C_  B )
8 ssiun2 3976 . . . . . . . 8  |-  ( x  e.  A  ->  B  C_ 
U_ x  e.  A  B )
9 sstr2 3204 . . . . . . . 8  |-  ( y 
C_  B  ->  ( B  C_  U_ x  e.  A  B  ->  y  C_ 
U_ x  e.  A  B ) )
108, 9syl5com 29 . . . . . . 7  |-  ( x  e.  A  ->  (
y  C_  B  ->  y 
C_  U_ x  e.  A  B ) )
117, 10syl5 32 . . . . . 6  |-  ( x  e.  A  ->  (
( Tr  B  /\  y  e.  B )  ->  y  C_  U_ x  e.  A  B ) )
125, 11rexlimi 2617 . . . . 5  |-  ( E. x  e.  A  ( Tr  B  /\  y  e.  B )  ->  y  C_ 
U_ x  e.  A  B )
132, 12syl 14 . . . 4  |-  ( ( A. x  e.  A  Tr  B  /\  E. x  e.  A  y  e.  B )  ->  y  C_ 
U_ x  e.  A  B )
141, 13sylan2b 287 . . 3  |-  ( ( A. x  e.  A  Tr  B  /\  y  e.  U_ x  e.  A  B )  ->  y  C_ 
U_ x  e.  A  B )
1514ralrimiva 2580 . 2  |-  ( A. x  e.  A  Tr  B  ->  A. y  e.  U_  x  e.  A  B
y  C_  U_ x  e.  A  B )
16 dftr3 4154 . 2  |-  ( Tr 
U_ x  e.  A  B 
<-> 
A. y  e.  U_  x  e.  A  B
y  C_  U_ x  e.  A  B )
1715, 16sylibr 134 1  |-  ( A. x  e.  A  Tr  B  ->  Tr  U_ x  e.  A  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2177   A.wral 2485   E.wrex 2486    C_ wss 3170   U_ciun 3933   Tr wtr 4150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-in 3176  df-ss 3183  df-uni 3857  df-iun 3935  df-tr 4151
This theorem is referenced by:  truni  4164
  Copyright terms: Public domain W3C validator