ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintrab2im Unicode version

Theorem onintrab2im 4554
Description: An existence condition which implies an intersection is an ordinal number. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
onintrab2im  |-  ( E. x  e.  On  ph  ->  |^| { x  e.  On  |  ph }  e.  On )

Proof of Theorem onintrab2im
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3268 . 2  |-  { x  e.  On  |  ph }  C_  On
2 nfrab1 2677 . . . . 5  |-  F/_ x { x  e.  On  |  ph }
32nfcri 2333 . . . 4  |-  F/ x  y  e.  { x  e.  On  |  ph }
43nfex 1651 . . 3  |-  F/ x E. y  y  e.  { x  e.  On  |  ph }
5 rabid 2673 . . . . 5  |-  ( x  e.  { x  e.  On  |  ph }  <->  ( x  e.  On  /\  ph ) )
6 elex2 2779 . . . . 5  |-  ( x  e.  { x  e.  On  |  ph }  ->  E. y  y  e. 
{ x  e.  On  |  ph } )
75, 6sylbir 135 . . . 4  |-  ( ( x  e.  On  /\  ph )  ->  E. y 
y  e.  { x  e.  On  |  ph }
)
87ex 115 . . 3  |-  ( x  e.  On  ->  ( ph  ->  E. y  y  e. 
{ x  e.  On  |  ph } ) )
94, 8rexlimi 2607 . 2  |-  ( E. x  e.  On  ph  ->  E. y  y  e. 
{ x  e.  On  |  ph } )
10 onintonm 4553 . 2  |-  ( ( { x  e.  On  |  ph }  C_  On  /\ 
E. y  y  e. 
{ x  e.  On  |  ph } )  ->  |^| { x  e.  On  |  ph }  e.  On )
111, 9, 10sylancr 414 1  |-  ( E. x  e.  On  ph  ->  |^| { x  e.  On  |  ph }  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1506    e. wcel 2167   E.wrex 2476   {crab 2479    C_ wss 3157   |^|cint 3874   Oncon0 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406
This theorem is referenced by:  cardcl  7248
  Copyright terms: Public domain W3C validator