Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onintrab2im | Unicode version |
Description: An existence condition which implies an intersection is an ordinal number. (Contributed by Jim Kingdon, 30-Aug-2021.) |
Ref | Expression |
---|---|
onintrab2im |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3213 | . 2 | |
2 | nfrab1 2636 | . . . . 5 | |
3 | 2 | nfcri 2293 | . . . 4 |
4 | 3 | nfex 1617 | . . 3 |
5 | rabid 2632 | . . . . 5 | |
6 | elex2 2728 | . . . . 5 | |
7 | 5, 6 | sylbir 134 | . . . 4 |
8 | 7 | ex 114 | . . 3 |
9 | 4, 8 | rexlimi 2567 | . 2 |
10 | onintonm 4475 | . 2 | |
11 | 1, 9, 10 | sylancr 411 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wex 1472 wcel 2128 wrex 2436 crab 2439 wss 3102 cint 3807 con0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 df-int 3808 df-tr 4063 df-iord 4326 df-on 4328 df-suc 4331 |
This theorem is referenced by: cardcl 7110 |
Copyright terms: Public domain | W3C validator |