ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintrab2im Unicode version

Theorem onintrab2im 4476
Description: An existence condition which implies an intersection is an ordinal number. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
onintrab2im  |-  ( E. x  e.  On  ph  ->  |^| { x  e.  On  |  ph }  e.  On )

Proof of Theorem onintrab2im
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3213 . 2  |-  { x  e.  On  |  ph }  C_  On
2 nfrab1 2636 . . . . 5  |-  F/_ x { x  e.  On  |  ph }
32nfcri 2293 . . . 4  |-  F/ x  y  e.  { x  e.  On  |  ph }
43nfex 1617 . . 3  |-  F/ x E. y  y  e.  { x  e.  On  |  ph }
5 rabid 2632 . . . . 5  |-  ( x  e.  { x  e.  On  |  ph }  <->  ( x  e.  On  /\  ph ) )
6 elex2 2728 . . . . 5  |-  ( x  e.  { x  e.  On  |  ph }  ->  E. y  y  e. 
{ x  e.  On  |  ph } )
75, 6sylbir 134 . . . 4  |-  ( ( x  e.  On  /\  ph )  ->  E. y 
y  e.  { x  e.  On  |  ph }
)
87ex 114 . . 3  |-  ( x  e.  On  ->  ( ph  ->  E. y  y  e. 
{ x  e.  On  |  ph } ) )
94, 8rexlimi 2567 . 2  |-  ( E. x  e.  On  ph  ->  E. y  y  e. 
{ x  e.  On  |  ph } )
10 onintonm 4475 . 2  |-  ( ( { x  e.  On  |  ph }  C_  On  /\ 
E. y  y  e. 
{ x  e.  On  |  ph } )  ->  |^| { x  e.  On  |  ph }  e.  On )
111, 9, 10sylancr 411 1  |-  ( E. x  e.  On  ph  ->  |^| { x  e.  On  |  ph }  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1472    e. wcel 2128   E.wrex 2436   {crab 2439    C_ wss 3102   |^|cint 3807   Oncon0 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-uni 3773  df-int 3808  df-tr 4063  df-iord 4326  df-on 4328  df-suc 4331
This theorem is referenced by:  cardcl  7110
  Copyright terms: Public domain W3C validator