| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onintrab2im | Unicode version | ||
| Description: An existence condition which implies an intersection is an ordinal number. (Contributed by Jim Kingdon, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| onintrab2im |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3309 |
. 2
| |
| 2 | nfrab1 2711 |
. . . . 5
| |
| 3 | 2 | nfcri 2366 |
. . . 4
|
| 4 | 3 | nfex 1683 |
. . 3
|
| 5 | rabid 2707 |
. . . . 5
| |
| 6 | elex2 2816 |
. . . . 5
| |
| 7 | 5, 6 | sylbir 135 |
. . . 4
|
| 8 | 7 | ex 115 |
. . 3
|
| 9 | 4, 8 | rexlimi 2641 |
. 2
|
| 10 | onintonm 4608 |
. 2
| |
| 11 | 1, 9, 10 | sylancr 414 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-tr 4182 df-iord 4456 df-on 4458 df-suc 4461 |
| This theorem is referenced by: cardcl 7349 |
| Copyright terms: Public domain | W3C validator |