| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onintrab2im | Unicode version | ||
| Description: An existence condition which implies an intersection is an ordinal number. (Contributed by Jim Kingdon, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| onintrab2im |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3282 |
. 2
| |
| 2 | nfrab1 2687 |
. . . . 5
| |
| 3 | 2 | nfcri 2343 |
. . . 4
|
| 4 | 3 | nfex 1661 |
. . 3
|
| 5 | rabid 2683 |
. . . . 5
| |
| 6 | elex2 2790 |
. . . . 5
| |
| 7 | 5, 6 | sylbir 135 |
. . . 4
|
| 8 | 7 | ex 115 |
. . 3
|
| 9 | 4, 8 | rexlimi 2617 |
. 2
|
| 10 | onintonm 4573 |
. 2
| |
| 11 | 1, 9, 10 | sylancr 414 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3857 df-int 3892 df-tr 4151 df-iord 4421 df-on 4423 df-suc 4426 |
| This theorem is referenced by: cardcl 7303 |
| Copyright terms: Public domain | W3C validator |