ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintrab2im Unicode version

Theorem onintrab2im 4502
Description: An existence condition which implies an intersection is an ordinal number. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
onintrab2im  |-  ( E. x  e.  On  ph  ->  |^| { x  e.  On  |  ph }  e.  On )

Proof of Theorem onintrab2im
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3232 . 2  |-  { x  e.  On  |  ph }  C_  On
2 nfrab1 2649 . . . . 5  |-  F/_ x { x  e.  On  |  ph }
32nfcri 2306 . . . 4  |-  F/ x  y  e.  { x  e.  On  |  ph }
43nfex 1630 . . 3  |-  F/ x E. y  y  e.  { x  e.  On  |  ph }
5 rabid 2645 . . . . 5  |-  ( x  e.  { x  e.  On  |  ph }  <->  ( x  e.  On  /\  ph ) )
6 elex2 2746 . . . . 5  |-  ( x  e.  { x  e.  On  |  ph }  ->  E. y  y  e. 
{ x  e.  On  |  ph } )
75, 6sylbir 134 . . . 4  |-  ( ( x  e.  On  /\  ph )  ->  E. y 
y  e.  { x  e.  On  |  ph }
)
87ex 114 . . 3  |-  ( x  e.  On  ->  ( ph  ->  E. y  y  e. 
{ x  e.  On  |  ph } ) )
94, 8rexlimi 2580 . 2  |-  ( E. x  e.  On  ph  ->  E. y  y  e. 
{ x  e.  On  |  ph } )
10 onintonm 4501 . 2  |-  ( ( { x  e.  On  |  ph }  C_  On  /\ 
E. y  y  e. 
{ x  e.  On  |  ph } )  ->  |^| { x  e.  On  |  ph }  e.  On )
111, 9, 10sylancr 412 1  |-  ( E. x  e.  On  ph  ->  |^| { x  e.  On  |  ph }  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1485    e. wcel 2141   E.wrex 2449   {crab 2452    C_ wss 3121   |^|cint 3831   Oncon0 4348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356
This theorem is referenced by:  cardcl  7158
  Copyright terms: Public domain W3C validator