| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onintrab2im | Unicode version | ||
| Description: An existence condition which implies an intersection is an ordinal number. (Contributed by Jim Kingdon, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| onintrab2im |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3268 |
. 2
| |
| 2 | nfrab1 2677 |
. . . . 5
| |
| 3 | 2 | nfcri 2333 |
. . . 4
|
| 4 | 3 | nfex 1651 |
. . 3
|
| 5 | rabid 2673 |
. . . . 5
| |
| 6 | elex2 2779 |
. . . . 5
| |
| 7 | 5, 6 | sylbir 135 |
. . . 4
|
| 8 | 7 | ex 115 |
. . 3
|
| 9 | 4, 8 | rexlimi 2607 |
. 2
|
| 10 | onintonm 4553 |
. 2
| |
| 11 | 1, 9, 10 | sylancr 414 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 |
| This theorem is referenced by: cardcl 7248 |
| Copyright terms: Public domain | W3C validator |