| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eusvobj2 | Unicode version | ||
| Description: Specify the same property
in two ways when class |
| Ref | Expression |
|---|---|
| eusvobj1.1 |
|
| Ref | Expression |
|---|---|
| eusvobj2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn2 3735 |
. . 3
| |
| 2 | eleq2 2293 |
. . . . . 6
| |
| 3 | abid 2217 |
. . . . . 6
| |
| 4 | velsn 3683 |
. . . . . 6
| |
| 5 | 2, 3, 4 | 3bitr3g 222 |
. . . . 5
|
| 6 | nfre1 2573 |
. . . . . . . . 9
| |
| 7 | 6 | nfab 2377 |
. . . . . . . 8
|
| 8 | 7 | nfeq1 2382 |
. . . . . . 7
|
| 9 | eusvobj1.1 |
. . . . . . . . 9
| |
| 10 | 9 | elabrex 5880 |
. . . . . . . 8
|
| 11 | eleq2 2293 |
. . . . . . . . 9
| |
| 12 | 9 | elsn 3682 |
. . . . . . . . . 10
|
| 13 | eqcom 2231 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | bitri 184 |
. . . . . . . . 9
|
| 15 | 11, 14 | bitrdi 196 |
. . . . . . . 8
|
| 16 | 10, 15 | imbitrid 154 |
. . . . . . 7
|
| 17 | 8, 16 | ralrimi 2601 |
. . . . . 6
|
| 18 | eqeq1 2236 |
. . . . . . 7
| |
| 19 | 18 | ralbidv 2530 |
. . . . . 6
|
| 20 | 17, 19 | syl5ibrcom 157 |
. . . . 5
|
| 21 | 5, 20 | sylbid 150 |
. . . 4
|
| 22 | 21 | exlimiv 1644 |
. . 3
|
| 23 | 1, 22 | sylbi 121 |
. 2
|
| 24 | euex 2107 |
. . 3
| |
| 25 | rexm 3591 |
. . . 4
| |
| 26 | 25 | exlimiv 1644 |
. . 3
|
| 27 | r19.2m 3578 |
. . . 4
| |
| 28 | 27 | ex 115 |
. . 3
|
| 29 | 24, 26, 28 | 3syl 17 |
. 2
|
| 30 | 23, 29 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-sn 3672 |
| This theorem is referenced by: eusvobj1 5987 |
| Copyright terms: Public domain | W3C validator |