| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eusvobj2 | Unicode version | ||
| Description: Specify the same property
in two ways when class |
| Ref | Expression |
|---|---|
| eusvobj1.1 |
|
| Ref | Expression |
|---|---|
| eusvobj2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn2 3691 |
. . 3
| |
| 2 | eleq2 2260 |
. . . . . 6
| |
| 3 | abid 2184 |
. . . . . 6
| |
| 4 | velsn 3639 |
. . . . . 6
| |
| 5 | 2, 3, 4 | 3bitr3g 222 |
. . . . 5
|
| 6 | nfre1 2540 |
. . . . . . . . 9
| |
| 7 | 6 | nfab 2344 |
. . . . . . . 8
|
| 8 | 7 | nfeq1 2349 |
. . . . . . 7
|
| 9 | eusvobj1.1 |
. . . . . . . . 9
| |
| 10 | 9 | elabrex 5804 |
. . . . . . . 8
|
| 11 | eleq2 2260 |
. . . . . . . . 9
| |
| 12 | 9 | elsn 3638 |
. . . . . . . . . 10
|
| 13 | eqcom 2198 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | bitri 184 |
. . . . . . . . 9
|
| 15 | 11, 14 | bitrdi 196 |
. . . . . . . 8
|
| 16 | 10, 15 | imbitrid 154 |
. . . . . . 7
|
| 17 | 8, 16 | ralrimi 2568 |
. . . . . 6
|
| 18 | eqeq1 2203 |
. . . . . . 7
| |
| 19 | 18 | ralbidv 2497 |
. . . . . 6
|
| 20 | 17, 19 | syl5ibrcom 157 |
. . . . 5
|
| 21 | 5, 20 | sylbid 150 |
. . . 4
|
| 22 | 21 | exlimiv 1612 |
. . 3
|
| 23 | 1, 22 | sylbi 121 |
. 2
|
| 24 | euex 2075 |
. . 3
| |
| 25 | rexm 3550 |
. . . 4
| |
| 26 | 25 | exlimiv 1612 |
. . 3
|
| 27 | r19.2m 3537 |
. . . 4
| |
| 28 | 27 | ex 115 |
. . 3
|
| 29 | 24, 26, 28 | 3syl 17 |
. 2
|
| 30 | 23, 29 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-sn 3628 |
| This theorem is referenced by: eusvobj1 5909 |
| Copyright terms: Public domain | W3C validator |