ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrelimasn Unicode version

Theorem elrelimasn 5035
Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
elrelimasn  |-  ( Rel 
R  ->  ( B  e.  ( R " { A } )  <->  A R B ) )

Proof of Theorem elrelimasn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elimag 5013 . . . . . 6  |-  ( B  e.  ( R " { A } )  -> 
( B  e.  ( R " { A } )  <->  E. y  e.  { A } y R B ) )
21ibi 176 . . . . 5  |-  ( B  e.  ( R " { A } )  ->  E. y  e.  { A } y R B )
3 rexm 3550 . . . . 5  |-  ( E. y  e.  { A } y R B  ->  E. y  y  e. 
{ A } )
4 elsni 3640 . . . . . 6  |-  ( y  e.  { A }  ->  y  =  A )
54eximi 1614 . . . . 5  |-  ( E. y  y  e.  { A }  ->  E. y 
y  =  A )
62, 3, 53syl 17 . . . 4  |-  ( B  e.  ( R " { A } )  ->  E. y  y  =  A )
7 isset 2769 . . . 4  |-  ( A  e.  _V  <->  E. y 
y  =  A )
86, 7sylibr 134 . . 3  |-  ( B  e.  ( R " { A } )  ->  A  e.  _V )
98a1i 9 . 2  |-  ( Rel 
R  ->  ( B  e.  ( R " { A } )  ->  A  e.  _V ) )
10 brrelex1 4702 . . 3  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  _V )
1110ex 115 . 2  |-  ( Rel 
R  ->  ( A R B  ->  A  e. 
_V ) )
12 imasng 5034 . . . . 5  |-  ( A  e.  _V  ->  ( R " { A }
)  =  { x  |  A R x }
)
1312eleq2d 2266 . . . 4  |-  ( A  e.  _V  ->  ( B  e.  ( R " { A } )  <-> 
B  e.  { x  |  A R x }
) )
14 brrelex2 4704 . . . . . 6  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
1514ex 115 . . . . 5  |-  ( Rel 
R  ->  ( A R B  ->  B  e. 
_V ) )
16 breq2 4037 . . . . . 6  |-  ( x  =  B  ->  ( A R x  <->  A R B ) )
1716elab3g 2915 . . . . 5  |-  ( ( A R B  ->  B  e.  _V )  ->  ( B  e.  {
x  |  A R x }  <->  A R B ) )
1815, 17syl 14 . . . 4  |-  ( Rel 
R  ->  ( B  e.  { x  |  A R x }  <->  A R B ) )
1913, 18sylan9bbr 463 . . 3  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( B  e.  ( R " { A } )  <-> 
A R B ) )
2019ex 115 . 2  |-  ( Rel 
R  ->  ( A  e.  _V  ->  ( B  e.  ( R " { A } )  <->  A R B ) ) )
219, 11, 20pm5.21ndd 706 1  |-  ( Rel 
R  ->  ( B  e.  ( R " { A } )  <->  A R B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   {cab 2182   E.wrex 2476   _Vcvv 2763   {csn 3622   class class class wbr 4033   "cima 4666   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676
This theorem is referenced by:  eliniseg2  5049
  Copyright terms: Public domain W3C validator