ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrelimasn Unicode version

Theorem elrelimasn 5094
Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
elrelimasn  |-  ( Rel 
R  ->  ( B  e.  ( R " { A } )  <->  A R B ) )

Proof of Theorem elrelimasn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elimag 5072 . . . . . 6  |-  ( B  e.  ( R " { A } )  -> 
( B  e.  ( R " { A } )  <->  E. y  e.  { A } y R B ) )
21ibi 176 . . . . 5  |-  ( B  e.  ( R " { A } )  ->  E. y  e.  { A } y R B )
3 rexm 3591 . . . . 5  |-  ( E. y  e.  { A } y R B  ->  E. y  y  e. 
{ A } )
4 elsni 3684 . . . . . 6  |-  ( y  e.  { A }  ->  y  =  A )
54eximi 1646 . . . . 5  |-  ( E. y  y  e.  { A }  ->  E. y 
y  =  A )
62, 3, 53syl 17 . . . 4  |-  ( B  e.  ( R " { A } )  ->  E. y  y  =  A )
7 isset 2806 . . . 4  |-  ( A  e.  _V  <->  E. y 
y  =  A )
86, 7sylibr 134 . . 3  |-  ( B  e.  ( R " { A } )  ->  A  e.  _V )
98a1i 9 . 2  |-  ( Rel 
R  ->  ( B  e.  ( R " { A } )  ->  A  e.  _V ) )
10 brrelex1 4758 . . 3  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  _V )
1110ex 115 . 2  |-  ( Rel 
R  ->  ( A R B  ->  A  e. 
_V ) )
12 imasng 5093 . . . . 5  |-  ( A  e.  _V  ->  ( R " { A }
)  =  { x  |  A R x }
)
1312eleq2d 2299 . . . 4  |-  ( A  e.  _V  ->  ( B  e.  ( R " { A } )  <-> 
B  e.  { x  |  A R x }
) )
14 brrelex2 4760 . . . . . 6  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
1514ex 115 . . . . 5  |-  ( Rel 
R  ->  ( A R B  ->  B  e. 
_V ) )
16 breq2 4087 . . . . . 6  |-  ( x  =  B  ->  ( A R x  <->  A R B ) )
1716elab3g 2954 . . . . 5  |-  ( ( A R B  ->  B  e.  _V )  ->  ( B  e.  {
x  |  A R x }  <->  A R B ) )
1815, 17syl 14 . . . 4  |-  ( Rel 
R  ->  ( B  e.  { x  |  A R x }  <->  A R B ) )
1913, 18sylan9bbr 463 . . 3  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( B  e.  ( R " { A } )  <-> 
A R B ) )
2019ex 115 . 2  |-  ( Rel 
R  ->  ( A  e.  _V  ->  ( B  e.  ( R " { A } )  <->  A R B ) ) )
219, 11, 20pm5.21ndd 710 1  |-  ( Rel 
R  ->  ( B  e.  ( R " { A } )  <->  A R B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   E.wrex 2509   _Vcvv 2799   {csn 3666   class class class wbr 4083   "cima 4722   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732
This theorem is referenced by:  eliniseg2  5108
  Copyright terms: Public domain W3C validator