ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrelimasn Unicode version

Theorem elrelimasn 5067
Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
elrelimasn  |-  ( Rel 
R  ->  ( B  e.  ( R " { A } )  <->  A R B ) )

Proof of Theorem elrelimasn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elimag 5045 . . . . . 6  |-  ( B  e.  ( R " { A } )  -> 
( B  e.  ( R " { A } )  <->  E. y  e.  { A } y R B ) )
21ibi 176 . . . . 5  |-  ( B  e.  ( R " { A } )  ->  E. y  e.  { A } y R B )
3 rexm 3568 . . . . 5  |-  ( E. y  e.  { A } y R B  ->  E. y  y  e. 
{ A } )
4 elsni 3661 . . . . . 6  |-  ( y  e.  { A }  ->  y  =  A )
54eximi 1624 . . . . 5  |-  ( E. y  y  e.  { A }  ->  E. y 
y  =  A )
62, 3, 53syl 17 . . . 4  |-  ( B  e.  ( R " { A } )  ->  E. y  y  =  A )
7 isset 2783 . . . 4  |-  ( A  e.  _V  <->  E. y 
y  =  A )
86, 7sylibr 134 . . 3  |-  ( B  e.  ( R " { A } )  ->  A  e.  _V )
98a1i 9 . 2  |-  ( Rel 
R  ->  ( B  e.  ( R " { A } )  ->  A  e.  _V ) )
10 brrelex1 4732 . . 3  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  _V )
1110ex 115 . 2  |-  ( Rel 
R  ->  ( A R B  ->  A  e. 
_V ) )
12 imasng 5066 . . . . 5  |-  ( A  e.  _V  ->  ( R " { A }
)  =  { x  |  A R x }
)
1312eleq2d 2277 . . . 4  |-  ( A  e.  _V  ->  ( B  e.  ( R " { A } )  <-> 
B  e.  { x  |  A R x }
) )
14 brrelex2 4734 . . . . . 6  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
1514ex 115 . . . . 5  |-  ( Rel 
R  ->  ( A R B  ->  B  e. 
_V ) )
16 breq2 4063 . . . . . 6  |-  ( x  =  B  ->  ( A R x  <->  A R B ) )
1716elab3g 2931 . . . . 5  |-  ( ( A R B  ->  B  e.  _V )  ->  ( B  e.  {
x  |  A R x }  <->  A R B ) )
1815, 17syl 14 . . . 4  |-  ( Rel 
R  ->  ( B  e.  { x  |  A R x }  <->  A R B ) )
1913, 18sylan9bbr 463 . . 3  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( B  e.  ( R " { A } )  <-> 
A R B ) )
2019ex 115 . 2  |-  ( Rel 
R  ->  ( A  e.  _V  ->  ( B  e.  ( R " { A } )  <->  A R B ) ) )
219, 11, 20pm5.21ndd 707 1  |-  ( Rel 
R  ->  ( B  e.  ( R " { A } )  <->  A R B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178   {cab 2193   E.wrex 2487   _Vcvv 2776   {csn 3643   class class class wbr 4059   "cima 4696   Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706
This theorem is referenced by:  eliniseg2  5081
  Copyright terms: Public domain W3C validator