ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismnd Unicode version

Theorem ismnd 13003
Description: The predicate "is a monoid". This is the defining theorem of a monoid by showing that a set is a monoid if and only if it is a set equipped with a closed, everywhere defined internal operation (so, a magma, see mndcl 13007), whose operation is associative (so, a semigroup, see also mndass 13008) and has a two-sided neutral element (see mndid 13009). (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
Hypotheses
Ref Expression
ismnd.b  |-  B  =  ( Base `  G
)
ismnd.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
ismnd  |-  ( G  e.  Mnd  <->  ( A. a  e.  B  A. b  e.  B  (
( a  .+  b
)  e.  B  /\  A. c  e.  B  ( ( a  .+  b
)  .+  c )  =  ( a  .+  ( b  .+  c
) ) )  /\  E. e  e.  B  A. a  e.  B  (
( e  .+  a
)  =  a  /\  ( a  .+  e
)  =  a ) ) )
Distinct variable groups:    B, a, b, c    B, e, a    G, a, b, c    .+ , a,
e    .+ , b, c
Allowed substitution hint:    G( e)

Proof of Theorem ismnd
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ismnd.b . . 3  |-  B  =  ( Base `  G
)
2 ismnd.p . . 3  |-  .+  =  ( +g  `  G )
31, 2ismnddef 13002 . 2  |-  ( G  e.  Mnd  <->  ( G  e. Smgrp  /\  E. e  e.  B  A. a  e.  B  ( ( e 
.+  a )  =  a  /\  ( a 
.+  e )  =  a ) ) )
4 rexm 3547 . . . . 5  |-  ( E. e  e.  B  A. a  e.  B  (
( e  .+  a
)  =  a  /\  ( a  .+  e
)  =  a )  ->  E. e  e  e.  B )
5 eleq1w 2254 . . . . . 6  |-  ( e  =  w  ->  (
e  e.  B  <->  w  e.  B ) )
65cbvexv 1930 . . . . 5  |-  ( E. e  e  e.  B  <->  E. w  w  e.  B
)
74, 6sylib 122 . . . 4  |-  ( E. e  e.  B  A. a  e.  B  (
( e  .+  a
)  =  a  /\  ( a  .+  e
)  =  a )  ->  E. w  w  e.  B )
81basmex 12680 . . . . 5  |-  ( w  e.  B  ->  G  e.  _V )
98exlimiv 1609 . . . 4  |-  ( E. w  w  e.  B  ->  G  e.  _V )
101, 2issgrpv 12990 . . . 4  |-  ( G  e.  _V  ->  ( G  e. Smgrp  <->  A. a  e.  B  A. b  e.  B  ( ( a  .+  b )  e.  B  /\  A. c  e.  B  ( ( a  .+  b )  .+  c
)  =  ( a 
.+  ( b  .+  c ) ) ) ) )
117, 9, 103syl 17 . . 3  |-  ( E. e  e.  B  A. a  e.  B  (
( e  .+  a
)  =  a  /\  ( a  .+  e
)  =  a )  ->  ( G  e. Smgrp  <->  A. a  e.  B  A. b  e.  B  (
( a  .+  b
)  e.  B  /\  A. c  e.  B  ( ( a  .+  b
)  .+  c )  =  ( a  .+  ( b  .+  c
) ) ) ) )
1211pm5.32ri 455 . 2  |-  ( ( G  e. Smgrp  /\  E. e  e.  B  A. a  e.  B  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) )  <-> 
( A. a  e.  B  A. b  e.  B  ( ( a 
.+  b )  e.  B  /\  A. c  e.  B  ( (
a  .+  b )  .+  c )  =  ( a  .+  ( b 
.+  c ) ) )  /\  E. e  e.  B  A. a  e.  B  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) ) )
133, 12bitri 184 1  |-  ( G  e.  Mnd  <->  ( A. a  e.  B  A. b  e.  B  (
( a  .+  b
)  e.  B  /\  A. c  e.  B  ( ( a  .+  b
)  .+  c )  =  ( a  .+  ( b  .+  c
) ) )  /\  E. e  e.  B  A. a  e.  B  (
( e  .+  a
)  =  a  /\  ( a  .+  e
)  =  a ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   _Vcvv 2760   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698  Smgrpcsgrp 12987   Mndcmnd 13000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mgm 12942  df-sgrp 12988  df-mnd 13001
This theorem is referenced by:  mndid  13009  ismndd  13021  mndpropd  13024  mhmmnd  13189
  Copyright terms: Public domain W3C validator