ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismnd Unicode version

Theorem ismnd 13060
Description: The predicate "is a monoid". This is the defining theorem of a monoid by showing that a set is a monoid if and only if it is a set equipped with a closed, everywhere defined internal operation (so, a magma, see mndcl 13064), whose operation is associative (so, a semigroup, see also mndass 13065) and has a two-sided neutral element (see mndid 13066). (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
Hypotheses
Ref Expression
ismnd.b  |-  B  =  ( Base `  G
)
ismnd.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
ismnd  |-  ( G  e.  Mnd  <->  ( A. a  e.  B  A. b  e.  B  (
( a  .+  b
)  e.  B  /\  A. c  e.  B  ( ( a  .+  b
)  .+  c )  =  ( a  .+  ( b  .+  c
) ) )  /\  E. e  e.  B  A. a  e.  B  (
( e  .+  a
)  =  a  /\  ( a  .+  e
)  =  a ) ) )
Distinct variable groups:    B, a, b, c    B, e, a    G, a, b, c    .+ , a,
e    .+ , b, c
Allowed substitution hint:    G( e)

Proof of Theorem ismnd
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ismnd.b . . 3  |-  B  =  ( Base `  G
)
2 ismnd.p . . 3  |-  .+  =  ( +g  `  G )
31, 2ismnddef 13059 . 2  |-  ( G  e.  Mnd  <->  ( G  e. Smgrp  /\  E. e  e.  B  A. a  e.  B  ( ( e 
.+  a )  =  a  /\  ( a 
.+  e )  =  a ) ) )
4 rexm 3550 . . . . 5  |-  ( E. e  e.  B  A. a  e.  B  (
( e  .+  a
)  =  a  /\  ( a  .+  e
)  =  a )  ->  E. e  e  e.  B )
5 eleq1w 2257 . . . . . 6  |-  ( e  =  w  ->  (
e  e.  B  <->  w  e.  B ) )
65cbvexv 1933 . . . . 5  |-  ( E. e  e  e.  B  <->  E. w  w  e.  B
)
74, 6sylib 122 . . . 4  |-  ( E. e  e.  B  A. a  e.  B  (
( e  .+  a
)  =  a  /\  ( a  .+  e
)  =  a )  ->  E. w  w  e.  B )
81basmex 12737 . . . . 5  |-  ( w  e.  B  ->  G  e.  _V )
98exlimiv 1612 . . . 4  |-  ( E. w  w  e.  B  ->  G  e.  _V )
101, 2issgrpv 13047 . . . 4  |-  ( G  e.  _V  ->  ( G  e. Smgrp  <->  A. a  e.  B  A. b  e.  B  ( ( a  .+  b )  e.  B  /\  A. c  e.  B  ( ( a  .+  b )  .+  c
)  =  ( a 
.+  ( b  .+  c ) ) ) ) )
117, 9, 103syl 17 . . 3  |-  ( E. e  e.  B  A. a  e.  B  (
( e  .+  a
)  =  a  /\  ( a  .+  e
)  =  a )  ->  ( G  e. Smgrp  <->  A. a  e.  B  A. b  e.  B  (
( a  .+  b
)  e.  B  /\  A. c  e.  B  ( ( a  .+  b
)  .+  c )  =  ( a  .+  ( b  .+  c
) ) ) ) )
1211pm5.32ri 455 . 2  |-  ( ( G  e. Smgrp  /\  E. e  e.  B  A. a  e.  B  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) )  <-> 
( A. a  e.  B  A. b  e.  B  ( ( a 
.+  b )  e.  B  /\  A. c  e.  B  ( (
a  .+  b )  .+  c )  =  ( a  .+  ( b 
.+  c ) ) )  /\  E. e  e.  B  A. a  e.  B  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) ) )
133, 12bitri 184 1  |-  ( G  e.  Mnd  <->  ( A. a  e.  B  A. b  e.  B  (
( a  .+  b
)  e.  B  /\  A. c  e.  B  ( ( a  .+  b
)  .+  c )  =  ( a  .+  ( b  .+  c
) ) )  /\  E. e  e.  B  A. a  e.  B  (
( e  .+  a
)  =  a  /\  ( a  .+  e
)  =  a ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476   _Vcvv 2763   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755  Smgrpcsgrp 13044   Mndcmnd 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mgm 12999  df-sgrp 13045  df-mnd 13058
This theorem is referenced by:  mndid  13066  ismndd  13078  mndpropd  13081  mhmmnd  13246
  Copyright terms: Public domain W3C validator