ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgmid Unicode version

Theorem ismgmid 12608
Description: The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b  |-  B  =  ( Base `  G
)
ismgmid.o  |-  .0.  =  ( 0g `  G )
ismgmid.p  |-  .+  =  ( +g  `  G )
mgmidcl.e  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
Assertion
Ref Expression
ismgmid  |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x 
.+  U )  =  x ) )  <->  .0.  =  U ) )
Distinct variable groups:    x, e,  .+    .0. , e, x    B, e, x    e, G, x    U, e, x
Allowed substitution hints:    ph( x, e)

Proof of Theorem ismgmid
StepHypRef Expression
1 id 19 . . . 4  |-  ( U  e.  B  ->  U  e.  B )
2 mgmidcl.e . . . . 5  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
3 mgmidmo 12603 . . . . 5  |-  E* e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x )
4 reu5 2678 . . . . 5  |-  ( E! e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  <->  ( E. e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  /\  E* e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) )
52, 3, 4sylanblrc 413 . . . 4  |-  ( ph  ->  E! e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
6 oveq1 5849 . . . . . . 7  |-  ( e  =  U  ->  (
e  .+  x )  =  ( U  .+  x ) )
76eqeq1d 2174 . . . . . 6  |-  ( e  =  U  ->  (
( e  .+  x
)  =  x  <->  ( U  .+  x )  =  x ) )
87ovanraleqv 5866 . . . . 5  |-  ( e  =  U  ->  ( A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x )  <->  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x ) ) )
98riota2 5820 . . . 4  |-  ( ( U  e.  B  /\  E! e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  ->  ( A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x )  <->  ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U ) )
101, 5, 9syl2anr 288 . . 3  |-  ( (
ph  /\  U  e.  B )  ->  ( A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x )  <->  ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U ) )
1110pm5.32da 448 . 2  |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x 
.+  U )  =  x ) )  <->  ( U  e.  B  /\  ( iota_ e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) )  =  U ) ) )
12 riotacl 5812 . . . . 5  |-  ( E! e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  -> 
( iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  e.  B
)
135, 12syl 14 . . . 4  |-  ( ph  ->  ( iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  e.  B
)
14 eleq1 2229 . . . 4  |-  ( (
iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  =  U  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  e.  B  <->  U  e.  B
) )
1513, 14syl5ibcom 154 . . 3  |-  ( ph  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U  ->  U  e.  B ) )
1615pm4.71rd 392 . 2  |-  ( ph  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U  <->  ( U  e.  B  /\  ( iota_ e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  =  U ) ) )
17 df-riota 5798 . . . 4  |-  ( iota_ e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) ) )
18 rexm 3508 . . . . . . 7  |-  ( E. e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  ->  E. e  e  e.  B )
192, 18syl 14 . . . . . 6  |-  ( ph  ->  E. e  e  e.  B )
20 ismgmid.b . . . . . . . 8  |-  B  =  ( Base `  G
)
2120basmex 12452 . . . . . . 7  |-  ( e  e.  B  ->  G  e.  _V )
2221exlimiv 1586 . . . . . 6  |-  ( E. e  e  e.  B  ->  G  e.  _V )
2319, 22syl 14 . . . . 5  |-  ( ph  ->  G  e.  _V )
24 ismgmid.p . . . . . 6  |-  .+  =  ( +g  `  G )
25 ismgmid.o . . . . . 6  |-  .0.  =  ( 0g `  G )
2620, 24, 25grpidvalg 12604 . . . . 5  |-  ( G  e.  _V  ->  .0.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) ) )
2723, 26syl 14 . . . 4  |-  ( ph  ->  .0.  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) ) )
2817, 27eqtr4id 2218 . . 3  |-  ( ph  ->  ( iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  =  .0.  )
2928eqeq1d 2174 . 2  |-  ( ph  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U  <->  .0.  =  U
) )
3011, 16, 293bitr2d 215 1  |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x 
.+  U )  =  x ) )  <->  .0.  =  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445   E!wreu 2446   E*wrmo 2447   _Vcvv 2726   iotacio 5151   ` cfv 5188   iota_crio 5797  (class class class)co 5842   Basecbs 12394   +g cplusg 12457   0gc0g 12573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-riota 5798  df-ov 5845  df-inn 8858  df-ndx 12397  df-slot 12398  df-base 12400  df-0g 12575
This theorem is referenced by:  mgmidcl  12609  mgmlrid  12610  ismgmid2  12611  mgmidsssn0  12615
  Copyright terms: Public domain W3C validator