ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgmid Unicode version

Theorem ismgmid 13151
Description: The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b  |-  B  =  ( Base `  G
)
ismgmid.o  |-  .0.  =  ( 0g `  G )
ismgmid.p  |-  .+  =  ( +g  `  G )
mgmidcl.e  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
Assertion
Ref Expression
ismgmid  |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x 
.+  U )  =  x ) )  <->  .0.  =  U ) )
Distinct variable groups:    x, e,  .+    .0. , e, x    B, e, x    e, G, x    U, e, x
Allowed substitution hints:    ph( x, e)

Proof of Theorem ismgmid
StepHypRef Expression
1 id 19 . . . 4  |-  ( U  e.  B  ->  U  e.  B )
2 mgmidcl.e . . . . 5  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
3 mgmidmo 13146 . . . . 5  |-  E* e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x )
4 reu5 2722 . . . . 5  |-  ( E! e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  <->  ( E. e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  /\  E* e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) )
52, 3, 4sylanblrc 416 . . . 4  |-  ( ph  ->  E! e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
6 oveq1 5950 . . . . . . 7  |-  ( e  =  U  ->  (
e  .+  x )  =  ( U  .+  x ) )
76eqeq1d 2213 . . . . . 6  |-  ( e  =  U  ->  (
( e  .+  x
)  =  x  <->  ( U  .+  x )  =  x ) )
87ovanraleqv 5967 . . . . 5  |-  ( e  =  U  ->  ( A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x )  <->  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x ) ) )
98riota2 5921 . . . 4  |-  ( ( U  e.  B  /\  E! e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  ->  ( A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x )  <->  ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U ) )
101, 5, 9syl2anr 290 . . 3  |-  ( (
ph  /\  U  e.  B )  ->  ( A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x )  <->  ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U ) )
1110pm5.32da 452 . 2  |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x 
.+  U )  =  x ) )  <->  ( U  e.  B  /\  ( iota_ e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) )  =  U ) ) )
12 riotacl 5913 . . . . 5  |-  ( E! e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  -> 
( iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  e.  B
)
135, 12syl 14 . . . 4  |-  ( ph  ->  ( iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  e.  B
)
14 eleq1 2267 . . . 4  |-  ( (
iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  =  U  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  e.  B  <->  U  e.  B
) )
1513, 14syl5ibcom 155 . . 3  |-  ( ph  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U  ->  U  e.  B ) )
1615pm4.71rd 394 . 2  |-  ( ph  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U  <->  ( U  e.  B  /\  ( iota_ e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  =  U ) ) )
17 df-riota 5898 . . . 4  |-  ( iota_ e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) ) )
18 rexm 3559 . . . . . . 7  |-  ( E. e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  ->  E. e  e  e.  B )
192, 18syl 14 . . . . . 6  |-  ( ph  ->  E. e  e  e.  B )
20 ismgmid.b . . . . . . . 8  |-  B  =  ( Base `  G
)
2120basmex 12833 . . . . . . 7  |-  ( e  e.  B  ->  G  e.  _V )
2221exlimiv 1620 . . . . . 6  |-  ( E. e  e  e.  B  ->  G  e.  _V )
2319, 22syl 14 . . . . 5  |-  ( ph  ->  G  e.  _V )
24 ismgmid.p . . . . . 6  |-  .+  =  ( +g  `  G )
25 ismgmid.o . . . . . 6  |-  .0.  =  ( 0g `  G )
2620, 24, 25grpidvalg 13147 . . . . 5  |-  ( G  e.  _V  ->  .0.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) ) )
2723, 26syl 14 . . . 4  |-  ( ph  ->  .0.  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) ) )
2817, 27eqtr4id 2256 . . 3  |-  ( ph  ->  ( iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  =  .0.  )
2928eqeq1d 2213 . 2  |-  ( ph  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U  <->  .0.  =  U
) )
3011, 16, 293bitr2d 216 1  |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x 
.+  U )  =  x ) )  <->  .0.  =  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372   E.wex 1514    e. wcel 2175   A.wral 2483   E.wrex 2484   E!wreu 2485   E*wrmo 2486   _Vcvv 2771   iotacio 5229   ` cfv 5270   iota_crio 5897  (class class class)co 5943   Basecbs 12774   +g cplusg 12851   0gc0g 13030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-inn 9036  df-ndx 12777  df-slot 12778  df-base 12780  df-0g 13032
This theorem is referenced by:  mgmidcl  13152  mgmlrid  13153  ismgmid2  13154  mgmidsssn0  13158  prds0g  13223  issrgid  13685  isringid  13729
  Copyright terms: Public domain W3C validator