ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgmid Unicode version

Theorem ismgmid 13284
Description: The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b  |-  B  =  ( Base `  G
)
ismgmid.o  |-  .0.  =  ( 0g `  G )
ismgmid.p  |-  .+  =  ( +g  `  G )
mgmidcl.e  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
Assertion
Ref Expression
ismgmid  |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x 
.+  U )  =  x ) )  <->  .0.  =  U ) )
Distinct variable groups:    x, e,  .+    .0. , e, x    B, e, x    e, G, x    U, e, x
Allowed substitution hints:    ph( x, e)

Proof of Theorem ismgmid
StepHypRef Expression
1 id 19 . . . 4  |-  ( U  e.  B  ->  U  e.  B )
2 mgmidcl.e . . . . 5  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
3 mgmidmo 13279 . . . . 5  |-  E* e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x )
4 reu5 2724 . . . . 5  |-  ( E! e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  <->  ( E. e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  /\  E* e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) )
52, 3, 4sylanblrc 416 . . . 4  |-  ( ph  ->  E! e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
6 oveq1 5964 . . . . . . 7  |-  ( e  =  U  ->  (
e  .+  x )  =  ( U  .+  x ) )
76eqeq1d 2215 . . . . . 6  |-  ( e  =  U  ->  (
( e  .+  x
)  =  x  <->  ( U  .+  x )  =  x ) )
87ovanraleqv 5981 . . . . 5  |-  ( e  =  U  ->  ( A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x )  <->  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x ) ) )
98riota2 5935 . . . 4  |-  ( ( U  e.  B  /\  E! e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  ->  ( A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x )  <->  ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U ) )
101, 5, 9syl2anr 290 . . 3  |-  ( (
ph  /\  U  e.  B )  ->  ( A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x )  <->  ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U ) )
1110pm5.32da 452 . 2  |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x 
.+  U )  =  x ) )  <->  ( U  e.  B  /\  ( iota_ e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) )  =  U ) ) )
12 riotacl 5927 . . . . 5  |-  ( E! e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  -> 
( iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  e.  B
)
135, 12syl 14 . . . 4  |-  ( ph  ->  ( iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  e.  B
)
14 eleq1 2269 . . . 4  |-  ( (
iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  =  U  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  e.  B  <->  U  e.  B
) )
1513, 14syl5ibcom 155 . . 3  |-  ( ph  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U  ->  U  e.  B ) )
1615pm4.71rd 394 . 2  |-  ( ph  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U  <->  ( U  e.  B  /\  ( iota_ e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  =  U ) ) )
17 df-riota 5912 . . . 4  |-  ( iota_ e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) ) )
18 rexm 3564 . . . . . . 7  |-  ( E. e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  ->  E. e  e  e.  B )
192, 18syl 14 . . . . . 6  |-  ( ph  ->  E. e  e  e.  B )
20 ismgmid.b . . . . . . . 8  |-  B  =  ( Base `  G
)
2120basmex 12966 . . . . . . 7  |-  ( e  e.  B  ->  G  e.  _V )
2221exlimiv 1622 . . . . . 6  |-  ( E. e  e  e.  B  ->  G  e.  _V )
2319, 22syl 14 . . . . 5  |-  ( ph  ->  G  e.  _V )
24 ismgmid.p . . . . . 6  |-  .+  =  ( +g  `  G )
25 ismgmid.o . . . . . 6  |-  .0.  =  ( 0g `  G )
2620, 24, 25grpidvalg 13280 . . . . 5  |-  ( G  e.  _V  ->  .0.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) ) )
2723, 26syl 14 . . . 4  |-  ( ph  ->  .0.  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) ) )
2817, 27eqtr4id 2258 . . 3  |-  ( ph  ->  ( iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  =  .0.  )
2928eqeq1d 2215 . 2  |-  ( ph  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U  <->  .0.  =  U
) )
3011, 16, 293bitr2d 216 1  |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x 
.+  U )  =  x ) )  <->  .0.  =  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2177   A.wral 2485   E.wrex 2486   E!wreu 2487   E*wrmo 2488   _Vcvv 2773   iotacio 5239   ` cfv 5280   iota_crio 5911  (class class class)co 5957   Basecbs 12907   +g cplusg 12984   0gc0g 13163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-riota 5912  df-ov 5960  df-inn 9057  df-ndx 12910  df-slot 12911  df-base 12913  df-0g 13165
This theorem is referenced by:  mgmidcl  13285  mgmlrid  13286  ismgmid2  13287  mgmidsssn0  13291  prds0g  13356  issrgid  13818  isringid  13862
  Copyright terms: Public domain W3C validator