ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgmid Unicode version

Theorem ismgmid 13020
Description: The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b  |-  B  =  ( Base `  G
)
ismgmid.o  |-  .0.  =  ( 0g `  G )
ismgmid.p  |-  .+  =  ( +g  `  G )
mgmidcl.e  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
Assertion
Ref Expression
ismgmid  |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x 
.+  U )  =  x ) )  <->  .0.  =  U ) )
Distinct variable groups:    x, e,  .+    .0. , e, x    B, e, x    e, G, x    U, e, x
Allowed substitution hints:    ph( x, e)

Proof of Theorem ismgmid
StepHypRef Expression
1 id 19 . . . 4  |-  ( U  e.  B  ->  U  e.  B )
2 mgmidcl.e . . . . 5  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
3 mgmidmo 13015 . . . . 5  |-  E* e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x )
4 reu5 2714 . . . . 5  |-  ( E! e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  <->  ( E. e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  /\  E* e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) )
52, 3, 4sylanblrc 416 . . . 4  |-  ( ph  ->  E! e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
6 oveq1 5929 . . . . . . 7  |-  ( e  =  U  ->  (
e  .+  x )  =  ( U  .+  x ) )
76eqeq1d 2205 . . . . . 6  |-  ( e  =  U  ->  (
( e  .+  x
)  =  x  <->  ( U  .+  x )  =  x ) )
87ovanraleqv 5946 . . . . 5  |-  ( e  =  U  ->  ( A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x )  <->  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x ) ) )
98riota2 5900 . . . 4  |-  ( ( U  e.  B  /\  E! e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  ->  ( A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x )  <->  ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U ) )
101, 5, 9syl2anr 290 . . 3  |-  ( (
ph  /\  U  e.  B )  ->  ( A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x )  <->  ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U ) )
1110pm5.32da 452 . 2  |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x 
.+  U )  =  x ) )  <->  ( U  e.  B  /\  ( iota_ e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) )  =  U ) ) )
12 riotacl 5892 . . . . 5  |-  ( E! e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  -> 
( iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  e.  B
)
135, 12syl 14 . . . 4  |-  ( ph  ->  ( iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  e.  B
)
14 eleq1 2259 . . . 4  |-  ( (
iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  =  U  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  e.  B  <->  U  e.  B
) )
1513, 14syl5ibcom 155 . . 3  |-  ( ph  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U  ->  U  e.  B ) )
1615pm4.71rd 394 . 2  |-  ( ph  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U  <->  ( U  e.  B  /\  ( iota_ e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  =  U ) ) )
17 df-riota 5877 . . . 4  |-  ( iota_ e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) ) )
18 rexm 3550 . . . . . . 7  |-  ( E. e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  ->  E. e  e  e.  B )
192, 18syl 14 . . . . . 6  |-  ( ph  ->  E. e  e  e.  B )
20 ismgmid.b . . . . . . . 8  |-  B  =  ( Base `  G
)
2120basmex 12737 . . . . . . 7  |-  ( e  e.  B  ->  G  e.  _V )
2221exlimiv 1612 . . . . . 6  |-  ( E. e  e  e.  B  ->  G  e.  _V )
2319, 22syl 14 . . . . 5  |-  ( ph  ->  G  e.  _V )
24 ismgmid.p . . . . . 6  |-  .+  =  ( +g  `  G )
25 ismgmid.o . . . . . 6  |-  .0.  =  ( 0g `  G )
2620, 24, 25grpidvalg 13016 . . . . 5  |-  ( G  e.  _V  ->  .0.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) ) )
2723, 26syl 14 . . . 4  |-  ( ph  ->  .0.  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) ) )
2817, 27eqtr4id 2248 . . 3  |-  ( ph  ->  ( iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  =  .0.  )
2928eqeq1d 2205 . 2  |-  ( ph  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U  <->  .0.  =  U
) )
3011, 16, 293bitr2d 216 1  |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x 
.+  U )  =  x ) )  <->  .0.  =  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476   E!wreu 2477   E*wrmo 2478   _Vcvv 2763   iotacio 5217   ` cfv 5258   iota_crio 5876  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   0gc0g 12927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684  df-0g 12929
This theorem is referenced by:  mgmidcl  13021  mgmlrid  13022  ismgmid2  13023  mgmidsssn0  13027  issrgid  13537  isringid  13581
  Copyright terms: Public domain W3C validator