ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgmid Unicode version

Theorem ismgmid 12631
Description: The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b  |-  B  =  ( Base `  G
)
ismgmid.o  |-  .0.  =  ( 0g `  G )
ismgmid.p  |-  .+  =  ( +g  `  G )
mgmidcl.e  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
Assertion
Ref Expression
ismgmid  |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x 
.+  U )  =  x ) )  <->  .0.  =  U ) )
Distinct variable groups:    x, e,  .+    .0. , e, x    B, e, x    e, G, x    U, e, x
Allowed substitution hints:    ph( x, e)

Proof of Theorem ismgmid
StepHypRef Expression
1 id 19 . . . 4  |-  ( U  e.  B  ->  U  e.  B )
2 mgmidcl.e . . . . 5  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
3 mgmidmo 12626 . . . . 5  |-  E* e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x )
4 reu5 2682 . . . . 5  |-  ( E! e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  <->  ( E. e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  /\  E* e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) )
52, 3, 4sylanblrc 414 . . . 4  |-  ( ph  ->  E! e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
6 oveq1 5860 . . . . . . 7  |-  ( e  =  U  ->  (
e  .+  x )  =  ( U  .+  x ) )
76eqeq1d 2179 . . . . . 6  |-  ( e  =  U  ->  (
( e  .+  x
)  =  x  <->  ( U  .+  x )  =  x ) )
87ovanraleqv 5877 . . . . 5  |-  ( e  =  U  ->  ( A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x )  <->  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x ) ) )
98riota2 5831 . . . 4  |-  ( ( U  e.  B  /\  E! e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  ->  ( A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x )  <->  ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U ) )
101, 5, 9syl2anr 288 . . 3  |-  ( (
ph  /\  U  e.  B )  ->  ( A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x )  <->  ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U ) )
1110pm5.32da 449 . 2  |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x 
.+  U )  =  x ) )  <->  ( U  e.  B  /\  ( iota_ e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) )  =  U ) ) )
12 riotacl 5823 . . . . 5  |-  ( E! e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  -> 
( iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  e.  B
)
135, 12syl 14 . . . 4  |-  ( ph  ->  ( iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  e.  B
)
14 eleq1 2233 . . . 4  |-  ( (
iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  =  U  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  e.  B  <->  U  e.  B
) )
1513, 14syl5ibcom 154 . . 3  |-  ( ph  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U  ->  U  e.  B ) )
1615pm4.71rd 392 . 2  |-  ( ph  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U  <->  ( U  e.  B  /\  ( iota_ e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  =  U ) ) )
17 df-riota 5809 . . . 4  |-  ( iota_ e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) ) )
18 rexm 3514 . . . . . . 7  |-  ( E. e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x )  ->  E. e  e  e.  B )
192, 18syl 14 . . . . . 6  |-  ( ph  ->  E. e  e  e.  B )
20 ismgmid.b . . . . . . . 8  |-  B  =  ( Base `  G
)
2120basmex 12474 . . . . . . 7  |-  ( e  e.  B  ->  G  e.  _V )
2221exlimiv 1591 . . . . . 6  |-  ( E. e  e  e.  B  ->  G  e.  _V )
2319, 22syl 14 . . . . 5  |-  ( ph  ->  G  e.  _V )
24 ismgmid.p . . . . . 6  |-  .+  =  ( +g  `  G )
25 ismgmid.o . . . . . 6  |-  .0.  =  ( 0g `  G )
2620, 24, 25grpidvalg 12627 . . . . 5  |-  ( G  e.  _V  ->  .0.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) ) )
2723, 26syl 14 . . . 4  |-  ( ph  ->  .0.  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) ) )
2817, 27eqtr4id 2222 . . 3  |-  ( ph  ->  ( iota_ e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )  =  .0.  )
2928eqeq1d 2179 . 2  |-  ( ph  ->  ( ( iota_ e  e.  B  A. x  e.  B  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) )  =  U  <->  .0.  =  U
) )
3011, 16, 293bitr2d 215 1  |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x 
.+  U )  =  x ) )  <->  .0.  =  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   E.wrex 2449   E!wreu 2450   E*wrmo 2451   _Vcvv 2730   iotacio 5158   ` cfv 5198   iota_crio 5808  (class class class)co 5853   Basecbs 12416   +g cplusg 12480   0gc0g 12596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-riota 5809  df-ov 5856  df-inn 8879  df-ndx 12419  df-slot 12420  df-base 12422  df-0g 12598
This theorem is referenced by:  mgmidcl  12632  mgmlrid  12633  ismgmid2  12634  mgmidsssn0  12638
  Copyright terms: Public domain W3C validator