Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ismgmid | Unicode version |
Description: The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ismgmid.b | |
ismgmid.o | |
ismgmid.p | |
mgmidcl.e |
Ref | Expression |
---|---|
ismgmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . 4 | |
2 | mgmidcl.e | . . . . 5 | |
3 | mgmidmo 12603 | . . . . 5 | |
4 | reu5 2678 | . . . . 5 | |
5 | 2, 3, 4 | sylanblrc 413 | . . . 4 |
6 | oveq1 5849 | . . . . . . 7 | |
7 | 6 | eqeq1d 2174 | . . . . . 6 |
8 | 7 | ovanraleqv 5866 | . . . . 5 |
9 | 8 | riota2 5820 | . . . 4 |
10 | 1, 5, 9 | syl2anr 288 | . . 3 |
11 | 10 | pm5.32da 448 | . 2 |
12 | riotacl 5812 | . . . . 5 | |
13 | 5, 12 | syl 14 | . . . 4 |
14 | eleq1 2229 | . . . 4 | |
15 | 13, 14 | syl5ibcom 154 | . . 3 |
16 | 15 | pm4.71rd 392 | . 2 |
17 | df-riota 5798 | . . . 4 | |
18 | rexm 3508 | . . . . . . 7 | |
19 | 2, 18 | syl 14 | . . . . . 6 |
20 | ismgmid.b | . . . . . . . 8 | |
21 | 20 | basmex 12452 | . . . . . . 7 |
22 | 21 | exlimiv 1586 | . . . . . 6 |
23 | 19, 22 | syl 14 | . . . . 5 |
24 | ismgmid.p | . . . . . 6 | |
25 | ismgmid.o | . . . . . 6 | |
26 | 20, 24, 25 | grpidvalg 12604 | . . . . 5 |
27 | 23, 26 | syl 14 | . . . 4 |
28 | 17, 27 | eqtr4id 2218 | . . 3 |
29 | 28 | eqeq1d 2174 | . 2 |
30 | 11, 16, 29 | 3bitr2d 215 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wral 2444 wrex 2445 wreu 2446 wrmo 2447 cvv 2726 cio 5151 cfv 5188 crio 5797 (class class class)co 5842 cbs 12394 cplusg 12457 c0g 12573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-riota 5798 df-ov 5845 df-inn 8858 df-ndx 12397 df-slot 12398 df-base 12400 df-0g 12575 |
This theorem is referenced by: mgmidcl 12609 mgmlrid 12610 ismgmid2 12611 mgmidsssn0 12615 |
Copyright terms: Public domain | W3C validator |