| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ismgmid | Unicode version | ||
| Description: The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ismgmid.b |
|
| ismgmid.o |
|
| ismgmid.p |
|
| mgmidcl.e |
|
| Ref | Expression |
|---|---|
| ismgmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . 4
| |
| 2 | mgmidcl.e |
. . . . 5
| |
| 3 | mgmidmo 13146 |
. . . . 5
| |
| 4 | reu5 2722 |
. . . . 5
| |
| 5 | 2, 3, 4 | sylanblrc 416 |
. . . 4
|
| 6 | oveq1 5950 |
. . . . . . 7
| |
| 7 | 6 | eqeq1d 2213 |
. . . . . 6
|
| 8 | 7 | ovanraleqv 5967 |
. . . . 5
|
| 9 | 8 | riota2 5921 |
. . . 4
|
| 10 | 1, 5, 9 | syl2anr 290 |
. . 3
|
| 11 | 10 | pm5.32da 452 |
. 2
|
| 12 | riotacl 5913 |
. . . . 5
| |
| 13 | 5, 12 | syl 14 |
. . . 4
|
| 14 | eleq1 2267 |
. . . 4
| |
| 15 | 13, 14 | syl5ibcom 155 |
. . 3
|
| 16 | 15 | pm4.71rd 394 |
. 2
|
| 17 | df-riota 5898 |
. . . 4
| |
| 18 | rexm 3559 |
. . . . . . 7
| |
| 19 | 2, 18 | syl 14 |
. . . . . 6
|
| 20 | ismgmid.b |
. . . . . . . 8
| |
| 21 | 20 | basmex 12833 |
. . . . . . 7
|
| 22 | 21 | exlimiv 1620 |
. . . . . 6
|
| 23 | 19, 22 | syl 14 |
. . . . 5
|
| 24 | ismgmid.p |
. . . . . 6
| |
| 25 | ismgmid.o |
. . . . . 6
| |
| 26 | 20, 24, 25 | grpidvalg 13147 |
. . . . 5
|
| 27 | 23, 26 | syl 14 |
. . . 4
|
| 28 | 17, 27 | eqtr4id 2256 |
. . 3
|
| 29 | 28 | eqeq1d 2213 |
. 2
|
| 30 | 11, 16, 29 | 3bitr2d 216 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-riota 5898 df-ov 5946 df-inn 9036 df-ndx 12777 df-slot 12778 df-base 12780 df-0g 13032 |
| This theorem is referenced by: mgmidcl 13152 mgmlrid 13153 ismgmid2 13154 mgmidsssn0 13158 prds0g 13223 issrgid 13685 isringid 13729 |
| Copyright terms: Public domain | W3C validator |