ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexn0 Unicode version

Theorem rexn0 3559
Description: Restricted existential quantification implies its restriction is nonempty (it is also inhabited as shown in rexm 3560). (Contributed by Szymon Jaroszewicz, 3-Apr-2007.)
Assertion
Ref Expression
rexn0  |-  ( E. x  e.  A  ph  ->  A  =/=  (/) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem rexn0
StepHypRef Expression
1 ne0i 3467 . . 3  |-  ( x  e.  A  ->  A  =/=  (/) )
21a1d 22 . 2  |-  ( x  e.  A  ->  ( ph  ->  A  =/=  (/) ) )
32rexlimiv 2617 1  |-  ( E. x  e.  A  ph  ->  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176    =/= wne 2376   E.wrex 2485   (/)c0 3460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-nul 3461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator