ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexn0 Unicode version

Theorem rexn0 3567
Description: Restricted existential quantification implies its restriction is nonempty (it is also inhabited as shown in rexm 3568). (Contributed by Szymon Jaroszewicz, 3-Apr-2007.)
Assertion
Ref Expression
rexn0  |-  ( E. x  e.  A  ph  ->  A  =/=  (/) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem rexn0
StepHypRef Expression
1 ne0i 3475 . . 3  |-  ( x  e.  A  ->  A  =/=  (/) )
21a1d 22 . 2  |-  ( x  e.  A  ->  ( ph  ->  A  =/=  (/) ) )
32rexlimiv 2619 1  |-  ( E. x  e.  A  ph  ->  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178    =/= wne 2378   E.wrex 2487   (/)c0 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-nul 3469
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator