Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfgrp2e | Unicode version |
Description: Alternate definition of a group as a set with a closed, associative operation, a left identity and a left inverse for each element. Alternate definition in [Lang] p. 7. (Contributed by NM, 10-Oct-2006.) (Revised by AV, 28-Aug-2021.) |
Ref | Expression |
---|---|
dfgrp2.b | |
dfgrp2.p |
Ref | Expression |
---|---|
dfgrp2e |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfgrp2.b | . . 3 | |
2 | dfgrp2.p | . . 3 | |
3 | 1, 2 | dfgrp2 12732 | . 2 Smgrp |
4 | rexm 3514 | . . . 4 | |
5 | 1 | basmex 12474 | . . . . 5 |
6 | 5 | exlimiv 1591 | . . . 4 |
7 | 1, 2 | issgrpv 12645 | . . . 4 Smgrp |
8 | 4, 6, 7 | 3syl 17 | . . 3 Smgrp |
9 | 8 | pm5.32ri 452 | . 2 Smgrp |
10 | 3, 9 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 wral 2448 wrex 2449 cvv 2730 cfv 5198 (class class class)co 5853 cbs 12416 cplusg 12480 Smgrpcsgrp 12642 cgrp 12708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-riota 5809 df-ov 5856 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-0g 12598 df-mgm 12610 df-sgrp 12643 df-mnd 12653 df-grp 12711 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |