ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfgrp2e Unicode version

Theorem dfgrp2e 13475
Description: Alternate definition of a group as a set with a closed, associative operation, a left identity and a left inverse for each element. Alternate definition in [Lang] p. 7. (Contributed by NM, 10-Oct-2006.) (Revised by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp2.b  |-  B  =  ( Base `  G
)
dfgrp2.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
dfgrp2e  |-  ( G  e.  Grp  <->  ( A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )  /\  E. n  e.  B  A. x  e.  B  (
( n  .+  x
)  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) ) )
Distinct variable groups:    B, i, n, x    i, G, n, x    .+ , i, n, x   
y, B, z, x   
y, G, z    y,  .+ , z

Proof of Theorem dfgrp2e
StepHypRef Expression
1 dfgrp2.b . . 3  |-  B  =  ( Base `  G
)
2 dfgrp2.p . . 3  |-  .+  =  ( +g  `  G )
31, 2dfgrp2 13474 . 2  |-  ( G  e.  Grp  <->  ( G  e. Smgrp  /\  E. n  e.  B  A. x  e.  B  ( ( n 
.+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) ) )
4 rexm 3568 . . . 4  |-  ( E. n  e.  B  A. x  e.  B  (
( n  .+  x
)  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n )  ->  E. n  n  e.  B )
51basmex 13006 . . . . 5  |-  ( n  e.  B  ->  G  e.  _V )
65exlimiv 1622 . . . 4  |-  ( E. n  n  e.  B  ->  G  e.  _V )
71, 2issgrpv 13351 . . . 4  |-  ( G  e.  _V  ->  ( G  e. Smgrp  <->  A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) ) ) )
84, 6, 73syl 17 . . 3  |-  ( E. n  e.  B  A. x  e.  B  (
( n  .+  x
)  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n )  -> 
( G  e. Smgrp  <->  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) ) ) )
98pm5.32ri 455 . 2  |-  ( ( G  e. Smgrp  /\  E. n  e.  B  A. x  e.  B  ( (
n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) )  <->  ( A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )  /\  E. n  e.  B  A. x  e.  B  (
( n  .+  x
)  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) ) )
103, 9bitri 184 1  |-  ( G  e.  Grp  <->  ( A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )  /\  E. n  e.  B  A. x  e.  B  (
( n  .+  x
)  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486   E.wrex 2487   _Vcvv 2776   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024  Smgrpcsgrp 13348   Grpcgrp 13447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator