ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotaeqdv Unicode version

Theorem riotaeqdv 5609
Description: Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011.)
Hypothesis
Ref Expression
riotaeqdv.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
riotaeqdv  |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  ( iota_ x  e.  B  ps ) )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    A( x)    B( x)

Proof of Theorem riotaeqdv
StepHypRef Expression
1 riotaeqdv.1 . . . . 5  |-  ( ph  ->  A  =  B )
21eleq2d 2157 . . . 4  |-  ( ph  ->  ( x  e.  A  <->  x  e.  B ) )
32anbi1d 453 . . 3  |-  ( ph  ->  ( ( x  e.  A  /\  ps )  <->  ( x  e.  B  /\  ps ) ) )
43iotabidv 5001 . 2  |-  ( ph  ->  ( iota x ( x  e.  A  /\  ps ) )  =  ( iota x ( x  e.  B  /\  ps ) ) )
5 df-riota 5608 . 2  |-  ( iota_ x  e.  A  ps )  =  ( iota x
( x  e.  A  /\  ps ) )
6 df-riota 5608 . 2  |-  ( iota_ x  e.  B  ps )  =  ( iota x
( x  e.  B  /\  ps ) )
74, 5, 63eqtr4g 2145 1  |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  ( iota_ x  e.  B  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   iotacio 4978   iota_crio 5607
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-rex 2365  df-uni 3654  df-iota 4980  df-riota 5608
This theorem is referenced by:  riotaeqbidv  5611
  Copyright terms: Public domain W3C validator