ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotaeqbidv Unicode version

Theorem riotaeqbidv 5627
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.)
Hypotheses
Ref Expression
riotaeqbidv.1  |-  ( ph  ->  A  =  B )
riotaeqbidv.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
riotaeqbidv  |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  ( iota_ x  e.  B  ch ) )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)    B( x)

Proof of Theorem riotaeqbidv
StepHypRef Expression
1 riotaeqbidv.2 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21riotabidv 5626 . 2  |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  ( iota_ x  e.  A  ch ) )
3 riotaeqbidv.1 . . 3  |-  ( ph  ->  A  =  B )
43riotaeqdv 5625 . 2  |-  ( ph  ->  ( iota_ x  e.  A  ch )  =  ( iota_ x  e.  B  ch ) )
52, 4eqtrd 2121 1  |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  ( iota_ x  e.  B  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1290   iota_crio 5623
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rex 2366  df-uni 3662  df-iota 4995  df-riota 5624
This theorem is referenced by:  acexmidlemab  5662
  Copyright terms: Public domain W3C validator