| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riotabidv | Unicode version | ||
| Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotabidv.1 |
|
| Ref | Expression |
|---|---|
| riotabidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 172 |
. . . 4
| |
| 2 | riotabidv.1 |
. . . 4
| |
| 3 | 1, 2 | anbi12d 473 |
. . 3
|
| 4 | 3 | iotabidv 5300 |
. 2
|
| 5 | df-riota 5953 |
. 2
| |
| 6 | df-riota 5953 |
. 2
| |
| 7 | 4, 5, 6 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-uni 3888 df-iota 5277 df-riota 5953 |
| This theorem is referenced by: riotaeqbidv 5956 csbriotag 5967 infvalti 7185 caucvgsrlemfv 7974 axcaucvglemval 8080 axcaucvglemcau 8081 subval 8334 divvalap 8817 divfnzn 9812 flval 10487 cjval 11351 sqrtrval 11506 qnumval 12702 qdenval 12703 grpinvval 13571 uspgredg2v 16013 usgredg2v 16016 |
| Copyright terms: Public domain | W3C validator |