| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riotabidv | Unicode version | ||
| Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotabidv.1 |
|
| Ref | Expression |
|---|---|
| riotabidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 172 |
. . . 4
| |
| 2 | riotabidv.1 |
. . . 4
| |
| 3 | 1, 2 | anbi12d 473 |
. . 3
|
| 4 | 3 | iotabidv 5241 |
. 2
|
| 5 | df-riota 5877 |
. 2
| |
| 6 | df-riota 5877 |
. 2
| |
| 7 | 4, 5, 6 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3840 df-iota 5219 df-riota 5877 |
| This theorem is referenced by: riotaeqbidv 5880 csbriotag 5890 infvalti 7088 caucvgsrlemfv 7858 axcaucvglemval 7964 axcaucvglemcau 7965 subval 8218 divvalap 8701 divfnzn 9695 flval 10362 cjval 11010 sqrtrval 11165 qnumval 12353 qdenval 12354 grpinvval 13175 |
| Copyright terms: Public domain | W3C validator |