| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riotabidv | Unicode version | ||
| Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotabidv.1 |
|
| Ref | Expression |
|---|---|
| riotabidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 172 |
. . . 4
| |
| 2 | riotabidv.1 |
. . . 4
| |
| 3 | 1, 2 | anbi12d 473 |
. . 3
|
| 4 | 3 | iotabidv 5254 |
. 2
|
| 5 | df-riota 5899 |
. 2
| |
| 6 | df-riota 5899 |
. 2
| |
| 7 | 4, 5, 6 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-uni 3851 df-iota 5232 df-riota 5899 |
| This theorem is referenced by: riotaeqbidv 5902 csbriotag 5912 infvalti 7124 caucvgsrlemfv 7904 axcaucvglemval 8010 axcaucvglemcau 8011 subval 8264 divvalap 8747 divfnzn 9742 flval 10415 cjval 11156 sqrtrval 11311 qnumval 12507 qdenval 12508 grpinvval 13375 |
| Copyright terms: Public domain | W3C validator |