Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotaeqdv GIF version

Theorem riotaeqdv 5724
 Description: Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011.)
Hypothesis
Ref Expression
riotaeqdv.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
riotaeqdv (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem riotaeqdv
StepHypRef Expression
1 riotaeqdv.1 . . . . 5 (𝜑𝐴 = 𝐵)
21eleq2d 2207 . . . 4 (𝜑 → (𝑥𝐴𝑥𝐵))
32anbi1d 460 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜓)))
43iotabidv 5104 . 2 (𝜑 → (℩𝑥(𝑥𝐴𝜓)) = (℩𝑥(𝑥𝐵𝜓)))
5 df-riota 5723 . 2 (𝑥𝐴 𝜓) = (℩𝑥(𝑥𝐴𝜓))
6 df-riota 5723 . 2 (𝑥𝐵 𝜓) = (℩𝑥(𝑥𝐵𝜓))
74, 5, 63eqtr4g 2195 1 (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1331   ∈ wcel 1480  ℩cio 5081  ℩crio 5722 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-rex 2420  df-uni 3732  df-iota 5083  df-riota 5723 This theorem is referenced by:  riotaeqbidv  5726
 Copyright terms: Public domain W3C validator