ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvpropdg Unicode version

Theorem grpinvpropdg 13603
Description: If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
grpinvpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
grpinvpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
grpinvpropdg.k  |-  ( ph  ->  K  e.  V )
grpinvpropdg.l  |-  ( ph  ->  L  e.  W )
grpinvpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
Assertion
Ref Expression
grpinvpropdg  |-  ( ph  ->  ( invg `  K )  =  ( invg `  L
) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y
Allowed substitution hints:    V( x, y)    W( x, y)

Proof of Theorem grpinvpropdg
StepHypRef Expression
1 grpinvpropd.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
2 grpinvpropd.1 . . . . . . . . 9  |-  ( ph  ->  B  =  ( Base `  K ) )
3 grpinvpropd.2 . . . . . . . . 9  |-  ( ph  ->  B  =  ( Base `  L ) )
4 grpinvpropdg.k . . . . . . . . 9  |-  ( ph  ->  K  e.  V )
5 grpinvpropdg.l . . . . . . . . 9  |-  ( ph  ->  L  e.  W )
62, 3, 4, 5, 1grpidpropdg 13402 . . . . . . . 8  |-  ( ph  ->  ( 0g `  K
)  =  ( 0g
`  L ) )
76adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( 0g `  K
)  =  ( 0g
`  L ) )
81, 7eqeq12d 2244 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( x ( +g  `  K ) y )  =  ( 0g `  K )  <-> 
( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
98anass1rs 571 . . . . 5  |-  ( ( ( ph  /\  y  e.  B )  /\  x  e.  B )  ->  (
( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  ( x
( +g  `  L ) y )  =  ( 0g `  L ) ) )
109riotabidva 5971 . . . 4  |-  ( (
ph  /\  y  e.  B )  ->  ( iota_ x  e.  B  ( x ( +g  `  K
) y )  =  ( 0g `  K
) )  =  (
iota_ x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
1110mpteq2dva 4173 . . 3  |-  ( ph  ->  ( y  e.  B  |->  ( iota_ x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) )  =  ( y  e.  B  |->  ( iota_ x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
122riotaeqdv 5954 . . . 4  |-  ( ph  ->  ( iota_ x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K ) )  =  ( iota_ x  e.  (
Base `  K )
( x ( +g  `  K ) y )  =  ( 0g `  K ) ) )
132, 12mpteq12dv 4165 . . 3  |-  ( ph  ->  ( y  e.  B  |->  ( iota_ x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) )  =  ( y  e.  ( Base `  K
)  |->  ( iota_ x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) ) )
143riotaeqdv 5954 . . . 4  |-  ( ph  ->  ( iota_ x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L ) )  =  ( iota_ x  e.  (
Base `  L )
( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
153, 14mpteq12dv 4165 . . 3  |-  ( ph  ->  ( y  e.  B  |->  ( iota_ x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )  =  ( y  e.  ( Base `  L
)  |->  ( iota_ x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
1611, 13, 153eqtr3d 2270 . 2  |-  ( ph  ->  ( y  e.  (
Base `  K )  |->  ( iota_ x  e.  (
Base `  K )
( x ( +g  `  K ) y )  =  ( 0g `  K ) ) )  =  ( y  e.  ( Base `  L
)  |->  ( iota_ x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
17 eqid 2229 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
18 eqid 2229 . . . 4  |-  ( +g  `  K )  =  ( +g  `  K )
19 eqid 2229 . . . 4  |-  ( 0g
`  K )  =  ( 0g `  K
)
20 eqid 2229 . . . 4  |-  ( invg `  K )  =  ( invg `  K )
2117, 18, 19, 20grpinvfvalg 13570 . . 3  |-  ( K  e.  V  ->  ( invg `  K )  =  ( y  e.  ( Base `  K
)  |->  ( iota_ x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) ) )
224, 21syl 14 . 2  |-  ( ph  ->  ( invg `  K )  =  ( y  e.  ( Base `  K )  |->  ( iota_ x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) ) )
23 eqid 2229 . . . 4  |-  ( Base `  L )  =  (
Base `  L )
24 eqid 2229 . . . 4  |-  ( +g  `  L )  =  ( +g  `  L )
25 eqid 2229 . . . 4  |-  ( 0g
`  L )  =  ( 0g `  L
)
26 eqid 2229 . . . 4  |-  ( invg `  L )  =  ( invg `  L )
2723, 24, 25, 26grpinvfvalg 13570 . . 3  |-  ( L  e.  W  ->  ( invg `  L )  =  ( y  e.  ( Base `  L
)  |->  ( iota_ x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
285, 27syl 14 . 2  |-  ( ph  ->  ( invg `  L )  =  ( y  e.  ( Base `  L )  |->  ( iota_ x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
2916, 22, 283eqtr4d 2272 1  |-  ( ph  ->  ( invg `  K )  =  ( invg `  L
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    |-> cmpt 4144   ` cfv 5317   iota_crio 5952  (class class class)co 6000   Basecbs 13027   +g cplusg 13105   0gc0g 13284   invgcminusg 13529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-0g 13286  df-minusg 13532
This theorem is referenced by:  grpsubpropdg  13632  grpsubpropd2  13633  mulgpropdg  13696  invrpropdg  14107  rlmvnegg  14423
  Copyright terms: Public domain W3C validator