ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvpropdg Unicode version

Theorem grpinvpropdg 12801
Description: If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
grpinvpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
grpinvpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
grpinvpropdg.k  |-  ( ph  ->  K  e.  V )
grpinvpropdg.l  |-  ( ph  ->  L  e.  W )
grpinvpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
Assertion
Ref Expression
grpinvpropdg  |-  ( ph  ->  ( invg `  K )  =  ( invg `  L
) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y
Allowed substitution hints:    V( x, y)    W( x, y)

Proof of Theorem grpinvpropdg
StepHypRef Expression
1 grpinvpropd.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
2 grpinvpropd.1 . . . . . . . . 9  |-  ( ph  ->  B  =  ( Base `  K ) )
3 grpinvpropd.2 . . . . . . . . 9  |-  ( ph  ->  B  =  ( Base `  L ) )
4 grpinvpropdg.k . . . . . . . . 9  |-  ( ph  ->  K  e.  V )
5 grpinvpropdg.l . . . . . . . . 9  |-  ( ph  ->  L  e.  W )
62, 3, 4, 5, 1grpidpropdg 12655 . . . . . . . 8  |-  ( ph  ->  ( 0g `  K
)  =  ( 0g
`  L ) )
76adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( 0g `  K
)  =  ( 0g
`  L ) )
81, 7eqeq12d 2188 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( x ( +g  `  K ) y )  =  ( 0g `  K )  <-> 
( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
98anass1rs 569 . . . . 5  |-  ( ( ( ph  /\  y  e.  B )  /\  x  e.  B )  ->  (
( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  ( x
( +g  `  L ) y )  =  ( 0g `  L ) ) )
109riotabidva 5834 . . . 4  |-  ( (
ph  /\  y  e.  B )  ->  ( iota_ x  e.  B  ( x ( +g  `  K
) y )  =  ( 0g `  K
) )  =  (
iota_ x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
1110mpteq2dva 4085 . . 3  |-  ( ph  ->  ( y  e.  B  |->  ( iota_ x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) )  =  ( y  e.  B  |->  ( iota_ x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
122riotaeqdv 5819 . . . 4  |-  ( ph  ->  ( iota_ x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K ) )  =  ( iota_ x  e.  (
Base `  K )
( x ( +g  `  K ) y )  =  ( 0g `  K ) ) )
132, 12mpteq12dv 4077 . . 3  |-  ( ph  ->  ( y  e.  B  |->  ( iota_ x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) )  =  ( y  e.  ( Base `  K
)  |->  ( iota_ x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) ) )
143riotaeqdv 5819 . . . 4  |-  ( ph  ->  ( iota_ x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L ) )  =  ( iota_ x  e.  (
Base `  L )
( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
153, 14mpteq12dv 4077 . . 3  |-  ( ph  ->  ( y  e.  B  |->  ( iota_ x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )  =  ( y  e.  ( Base `  L
)  |->  ( iota_ x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
1611, 13, 153eqtr3d 2214 . 2  |-  ( ph  ->  ( y  e.  (
Base `  K )  |->  ( iota_ x  e.  (
Base `  K )
( x ( +g  `  K ) y )  =  ( 0g `  K ) ) )  =  ( y  e.  ( Base `  L
)  |->  ( iota_ x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
17 eqid 2173 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
18 eqid 2173 . . . 4  |-  ( +g  `  K )  =  ( +g  `  K )
19 eqid 2173 . . . 4  |-  ( 0g
`  K )  =  ( 0g `  K
)
20 eqid 2173 . . . 4  |-  ( invg `  K )  =  ( invg `  K )
2117, 18, 19, 20grpinvfvalg 12772 . . 3  |-  ( K  e.  V  ->  ( invg `  K )  =  ( y  e.  ( Base `  K
)  |->  ( iota_ x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) ) )
224, 21syl 14 . 2  |-  ( ph  ->  ( invg `  K )  =  ( y  e.  ( Base `  K )  |->  ( iota_ x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) ) )
23 eqid 2173 . . . 4  |-  ( Base `  L )  =  (
Base `  L )
24 eqid 2173 . . . 4  |-  ( +g  `  L )  =  ( +g  `  L )
25 eqid 2173 . . . 4  |-  ( 0g
`  L )  =  ( 0g `  L
)
26 eqid 2173 . . . 4  |-  ( invg `  L )  =  ( invg `  L )
2723, 24, 25, 26grpinvfvalg 12772 . . 3  |-  ( L  e.  W  ->  ( invg `  L )  =  ( y  e.  ( Base `  L
)  |->  ( iota_ x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
285, 27syl 14 . 2  |-  ( ph  ->  ( invg `  L )  =  ( y  e.  ( Base `  L )  |->  ( iota_ x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
2916, 22, 283eqtr4d 2216 1  |-  ( ph  ->  ( invg `  K )  =  ( invg `  L
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1351    e. wcel 2144    |-> cmpt 4056   ` cfv 5205   iota_crio 5817  (class class class)co 5862   Basecbs 12425   +g cplusg 12489   0gc0g 12623   invgcminusg 12736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 707  ax-5 1443  ax-7 1444  ax-gen 1445  ax-ie1 1489  ax-ie2 1490  ax-8 1500  ax-10 1501  ax-11 1502  ax-i12 1503  ax-bndl 1505  ax-4 1506  ax-17 1522  ax-i9 1526  ax-ial 1530  ax-i5r 1531  ax-13 2146  ax-14 2147  ax-ext 2155  ax-coll 4110  ax-sep 4113  ax-pow 4166  ax-pr 4200  ax-un 4424  ax-cnex 7874  ax-resscn 7875  ax-1re 7877  ax-addrcl 7880
This theorem depends on definitions:  df-bi 117  df-3an 978  df-tru 1354  df-nf 1457  df-sb 1759  df-eu 2025  df-mo 2026  df-clab 2160  df-cleq 2166  df-clel 2169  df-nfc 2304  df-ral 2456  df-rex 2457  df-reu 2458  df-rab 2460  df-v 2735  df-sbc 2959  df-csb 3053  df-un 3128  df-in 3130  df-ss 3137  df-pw 3571  df-sn 3592  df-pr 3593  df-op 3595  df-uni 3803  df-int 3838  df-iun 3881  df-br 3996  df-opab 4057  df-mpt 4058  df-id 4284  df-xp 4623  df-rel 4624  df-cnv 4625  df-co 4626  df-dm 4627  df-rn 4628  df-res 4629  df-ima 4630  df-iota 5167  df-fun 5207  df-fn 5208  df-f 5209  df-f1 5210  df-fo 5211  df-f1o 5212  df-fv 5213  df-riota 5818  df-ov 5865  df-inn 8888  df-ndx 12428  df-slot 12429  df-base 12431  df-0g 12625  df-minusg 12739
This theorem is referenced by:  grpsubpropdg  12830  grpsubpropd2  12831
  Copyright terms: Public domain W3C validator