Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpinvpropdg | Unicode version |
Description: If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
grpinvpropd.1 | |
grpinvpropd.2 | |
grpinvpropdg.k | |
grpinvpropdg.l | |
grpinvpropd.3 |
Ref | Expression |
---|---|
grpinvpropdg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvpropd.3 | . . . . . . 7 | |
2 | grpinvpropd.1 | . . . . . . . . 9 | |
3 | grpinvpropd.2 | . . . . . . . . 9 | |
4 | grpinvpropdg.k | . . . . . . . . 9 | |
5 | grpinvpropdg.l | . . . . . . . . 9 | |
6 | 2, 3, 4, 5, 1 | grpidpropdg 12655 | . . . . . . . 8 |
7 | 6 | adantr 276 | . . . . . . 7 |
8 | 1, 7 | eqeq12d 2188 | . . . . . 6 |
9 | 8 | anass1rs 569 | . . . . 5 |
10 | 9 | riotabidva 5834 | . . . 4 |
11 | 10 | mpteq2dva 4085 | . . 3 |
12 | 2 | riotaeqdv 5819 | . . . 4 |
13 | 2, 12 | mpteq12dv 4077 | . . 3 |
14 | 3 | riotaeqdv 5819 | . . . 4 |
15 | 3, 14 | mpteq12dv 4077 | . . 3 |
16 | 11, 13, 15 | 3eqtr3d 2214 | . 2 |
17 | eqid 2173 | . . . 4 | |
18 | eqid 2173 | . . . 4 | |
19 | eqid 2173 | . . . 4 | |
20 | eqid 2173 | . . . 4 | |
21 | 17, 18, 19, 20 | grpinvfvalg 12772 | . . 3 |
22 | 4, 21 | syl 14 | . 2 |
23 | eqid 2173 | . . . 4 | |
24 | eqid 2173 | . . . 4 | |
25 | eqid 2173 | . . . 4 | |
26 | eqid 2173 | . . . 4 | |
27 | 23, 24, 25, 26 | grpinvfvalg 12772 | . . 3 |
28 | 5, 27 | syl 14 | . 2 |
29 | 16, 22, 28 | 3eqtr4d 2216 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1351 wcel 2144 cmpt 4056 cfv 5205 crio 5817 (class class class)co 5862 cbs 12425 cplusg 12489 c0g 12623 cminusg 12736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 707 ax-5 1443 ax-7 1444 ax-gen 1445 ax-ie1 1489 ax-ie2 1490 ax-8 1500 ax-10 1501 ax-11 1502 ax-i12 1503 ax-bndl 1505 ax-4 1506 ax-17 1522 ax-i9 1526 ax-ial 1530 ax-i5r 1531 ax-13 2146 ax-14 2147 ax-ext 2155 ax-coll 4110 ax-sep 4113 ax-pow 4166 ax-pr 4200 ax-un 4424 ax-cnex 7874 ax-resscn 7875 ax-1re 7877 ax-addrcl 7880 |
This theorem depends on definitions: df-bi 117 df-3an 978 df-tru 1354 df-nf 1457 df-sb 1759 df-eu 2025 df-mo 2026 df-clab 2160 df-cleq 2166 df-clel 2169 df-nfc 2304 df-ral 2456 df-rex 2457 df-reu 2458 df-rab 2460 df-v 2735 df-sbc 2959 df-csb 3053 df-un 3128 df-in 3130 df-ss 3137 df-pw 3571 df-sn 3592 df-pr 3593 df-op 3595 df-uni 3803 df-int 3838 df-iun 3881 df-br 3996 df-opab 4057 df-mpt 4058 df-id 4284 df-xp 4623 df-rel 4624 df-cnv 4625 df-co 4626 df-dm 4627 df-rn 4628 df-res 4629 df-ima 4630 df-iota 5167 df-fun 5207 df-fn 5208 df-f 5209 df-f1 5210 df-fo 5211 df-f1o 5212 df-fv 5213 df-riota 5818 df-ov 5865 df-inn 8888 df-ndx 12428 df-slot 12429 df-base 12431 df-0g 12625 df-minusg 12739 |
This theorem is referenced by: grpsubpropdg 12830 grpsubpropd2 12831 |
Copyright terms: Public domain | W3C validator |