ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvpropdg Unicode version

Theorem grpinvpropdg 13147
Description: If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
grpinvpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
grpinvpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
grpinvpropdg.k  |-  ( ph  ->  K  e.  V )
grpinvpropdg.l  |-  ( ph  ->  L  e.  W )
grpinvpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
Assertion
Ref Expression
grpinvpropdg  |-  ( ph  ->  ( invg `  K )  =  ( invg `  L
) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y
Allowed substitution hints:    V( x, y)    W( x, y)

Proof of Theorem grpinvpropdg
StepHypRef Expression
1 grpinvpropd.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
2 grpinvpropd.1 . . . . . . . . 9  |-  ( ph  ->  B  =  ( Base `  K ) )
3 grpinvpropd.2 . . . . . . . . 9  |-  ( ph  ->  B  =  ( Base `  L ) )
4 grpinvpropdg.k . . . . . . . . 9  |-  ( ph  ->  K  e.  V )
5 grpinvpropdg.l . . . . . . . . 9  |-  ( ph  ->  L  e.  W )
62, 3, 4, 5, 1grpidpropdg 12957 . . . . . . . 8  |-  ( ph  ->  ( 0g `  K
)  =  ( 0g
`  L ) )
76adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( 0g `  K
)  =  ( 0g
`  L ) )
81, 7eqeq12d 2208 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( x ( +g  `  K ) y )  =  ( 0g `  K )  <-> 
( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
98anass1rs 571 . . . . 5  |-  ( ( ( ph  /\  y  e.  B )  /\  x  e.  B )  ->  (
( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  ( x
( +g  `  L ) y )  =  ( 0g `  L ) ) )
109riotabidva 5890 . . . 4  |-  ( (
ph  /\  y  e.  B )  ->  ( iota_ x  e.  B  ( x ( +g  `  K
) y )  =  ( 0g `  K
) )  =  (
iota_ x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
1110mpteq2dva 4119 . . 3  |-  ( ph  ->  ( y  e.  B  |->  ( iota_ x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) )  =  ( y  e.  B  |->  ( iota_ x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
122riotaeqdv 5874 . . . 4  |-  ( ph  ->  ( iota_ x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K ) )  =  ( iota_ x  e.  (
Base `  K )
( x ( +g  `  K ) y )  =  ( 0g `  K ) ) )
132, 12mpteq12dv 4111 . . 3  |-  ( ph  ->  ( y  e.  B  |->  ( iota_ x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) )  =  ( y  e.  ( Base `  K
)  |->  ( iota_ x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) ) )
143riotaeqdv 5874 . . . 4  |-  ( ph  ->  ( iota_ x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L ) )  =  ( iota_ x  e.  (
Base `  L )
( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
153, 14mpteq12dv 4111 . . 3  |-  ( ph  ->  ( y  e.  B  |->  ( iota_ x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )  =  ( y  e.  ( Base `  L
)  |->  ( iota_ x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
1611, 13, 153eqtr3d 2234 . 2  |-  ( ph  ->  ( y  e.  (
Base `  K )  |->  ( iota_ x  e.  (
Base `  K )
( x ( +g  `  K ) y )  =  ( 0g `  K ) ) )  =  ( y  e.  ( Base `  L
)  |->  ( iota_ x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
17 eqid 2193 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
18 eqid 2193 . . . 4  |-  ( +g  `  K )  =  ( +g  `  K )
19 eqid 2193 . . . 4  |-  ( 0g
`  K )  =  ( 0g `  K
)
20 eqid 2193 . . . 4  |-  ( invg `  K )  =  ( invg `  K )
2117, 18, 19, 20grpinvfvalg 13114 . . 3  |-  ( K  e.  V  ->  ( invg `  K )  =  ( y  e.  ( Base `  K
)  |->  ( iota_ x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) ) )
224, 21syl 14 . 2  |-  ( ph  ->  ( invg `  K )  =  ( y  e.  ( Base `  K )  |->  ( iota_ x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) ) )
23 eqid 2193 . . . 4  |-  ( Base `  L )  =  (
Base `  L )
24 eqid 2193 . . . 4  |-  ( +g  `  L )  =  ( +g  `  L )
25 eqid 2193 . . . 4  |-  ( 0g
`  L )  =  ( 0g `  L
)
26 eqid 2193 . . . 4  |-  ( invg `  L )  =  ( invg `  L )
2723, 24, 25, 26grpinvfvalg 13114 . . 3  |-  ( L  e.  W  ->  ( invg `  L )  =  ( y  e.  ( Base `  L
)  |->  ( iota_ x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
285, 27syl 14 . 2  |-  ( ph  ->  ( invg `  L )  =  ( y  e.  ( Base `  L )  |->  ( iota_ x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
2916, 22, 283eqtr4d 2236 1  |-  ( ph  ->  ( invg `  K )  =  ( invg `  L
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    |-> cmpt 4090   ` cfv 5254   iota_crio 5872  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   0gc0g 12867   invgcminusg 13073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-0g 12869  df-minusg 13076
This theorem is referenced by:  grpsubpropdg  13176  grpsubpropd2  13177  mulgpropdg  13234  invrpropdg  13645  rlmvnegg  13961
  Copyright terms: Public domain W3C validator