| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvpropdg | Unicode version | ||
| Description: If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| grpinvpropd.1 |
|
| grpinvpropd.2 |
|
| grpinvpropdg.k |
|
| grpinvpropdg.l |
|
| grpinvpropd.3 |
|
| Ref | Expression |
|---|---|
| grpinvpropdg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvpropd.3 |
. . . . . . 7
| |
| 2 | grpinvpropd.1 |
. . . . . . . . 9
| |
| 3 | grpinvpropd.2 |
. . . . . . . . 9
| |
| 4 | grpinvpropdg.k |
. . . . . . . . 9
| |
| 5 | grpinvpropdg.l |
. . . . . . . . 9
| |
| 6 | 2, 3, 4, 5, 1 | grpidpropdg 13281 |
. . . . . . . 8
|
| 7 | 6 | adantr 276 |
. . . . . . 7
|
| 8 | 1, 7 | eqeq12d 2221 |
. . . . . 6
|
| 9 | 8 | anass1rs 571 |
. . . . 5
|
| 10 | 9 | riotabidva 5929 |
. . . 4
|
| 11 | 10 | mpteq2dva 4142 |
. . 3
|
| 12 | 2 | riotaeqdv 5913 |
. . . 4
|
| 13 | 2, 12 | mpteq12dv 4134 |
. . 3
|
| 14 | 3 | riotaeqdv 5913 |
. . . 4
|
| 15 | 3, 14 | mpteq12dv 4134 |
. . 3
|
| 16 | 11, 13, 15 | 3eqtr3d 2247 |
. 2
|
| 17 | eqid 2206 |
. . . 4
| |
| 18 | eqid 2206 |
. . . 4
| |
| 19 | eqid 2206 |
. . . 4
| |
| 20 | eqid 2206 |
. . . 4
| |
| 21 | 17, 18, 19, 20 | grpinvfvalg 13449 |
. . 3
|
| 22 | 4, 21 | syl 14 |
. 2
|
| 23 | eqid 2206 |
. . . 4
| |
| 24 | eqid 2206 |
. . . 4
| |
| 25 | eqid 2206 |
. . . 4
| |
| 26 | eqid 2206 |
. . . 4
| |
| 27 | 23, 24, 25, 26 | grpinvfvalg 13449 |
. . 3
|
| 28 | 5, 27 | syl 14 |
. 2
|
| 29 | 16, 22, 28 | 3eqtr4d 2249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-inn 9057 df-ndx 12910 df-slot 12911 df-base 12913 df-0g 13165 df-minusg 13411 |
| This theorem is referenced by: grpsubpropdg 13511 grpsubpropd2 13512 mulgpropdg 13575 invrpropdg 13986 rlmvnegg 14302 |
| Copyright terms: Public domain | W3C validator |