ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvpropdg Unicode version

Theorem grpinvpropdg 12945
Description: If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
grpinvpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
grpinvpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
grpinvpropdg.k  |-  ( ph  ->  K  e.  V )
grpinvpropdg.l  |-  ( ph  ->  L  e.  W )
grpinvpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
Assertion
Ref Expression
grpinvpropdg  |-  ( ph  ->  ( invg `  K )  =  ( invg `  L
) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y
Allowed substitution hints:    V( x, y)    W( x, y)

Proof of Theorem grpinvpropdg
StepHypRef Expression
1 grpinvpropd.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
2 grpinvpropd.1 . . . . . . . . 9  |-  ( ph  ->  B  =  ( Base `  K ) )
3 grpinvpropd.2 . . . . . . . . 9  |-  ( ph  ->  B  =  ( Base `  L ) )
4 grpinvpropdg.k . . . . . . . . 9  |-  ( ph  ->  K  e.  V )
5 grpinvpropdg.l . . . . . . . . 9  |-  ( ph  ->  L  e.  W )
62, 3, 4, 5, 1grpidpropdg 12793 . . . . . . . 8  |-  ( ph  ->  ( 0g `  K
)  =  ( 0g
`  L ) )
76adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( 0g `  K
)  =  ( 0g
`  L ) )
81, 7eqeq12d 2192 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( x ( +g  `  K ) y )  =  ( 0g `  K )  <-> 
( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
98anass1rs 571 . . . . 5  |-  ( ( ( ph  /\  y  e.  B )  /\  x  e.  B )  ->  (
( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  ( x
( +g  `  L ) y )  =  ( 0g `  L ) ) )
109riotabidva 5847 . . . 4  |-  ( (
ph  /\  y  e.  B )  ->  ( iota_ x  e.  B  ( x ( +g  `  K
) y )  =  ( 0g `  K
) )  =  (
iota_ x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
1110mpteq2dva 4094 . . 3  |-  ( ph  ->  ( y  e.  B  |->  ( iota_ x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) )  =  ( y  e.  B  |->  ( iota_ x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
122riotaeqdv 5832 . . . 4  |-  ( ph  ->  ( iota_ x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K ) )  =  ( iota_ x  e.  (
Base `  K )
( x ( +g  `  K ) y )  =  ( 0g `  K ) ) )
132, 12mpteq12dv 4086 . . 3  |-  ( ph  ->  ( y  e.  B  |->  ( iota_ x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) )  =  ( y  e.  ( Base `  K
)  |->  ( iota_ x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) ) )
143riotaeqdv 5832 . . . 4  |-  ( ph  ->  ( iota_ x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L ) )  =  ( iota_ x  e.  (
Base `  L )
( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
153, 14mpteq12dv 4086 . . 3  |-  ( ph  ->  ( y  e.  B  |->  ( iota_ x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )  =  ( y  e.  ( Base `  L
)  |->  ( iota_ x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
1611, 13, 153eqtr3d 2218 . 2  |-  ( ph  ->  ( y  e.  (
Base `  K )  |->  ( iota_ x  e.  (
Base `  K )
( x ( +g  `  K ) y )  =  ( 0g `  K ) ) )  =  ( y  e.  ( Base `  L
)  |->  ( iota_ x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
17 eqid 2177 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
18 eqid 2177 . . . 4  |-  ( +g  `  K )  =  ( +g  `  K )
19 eqid 2177 . . . 4  |-  ( 0g
`  K )  =  ( 0g `  K
)
20 eqid 2177 . . . 4  |-  ( invg `  K )  =  ( invg `  K )
2117, 18, 19, 20grpinvfvalg 12915 . . 3  |-  ( K  e.  V  ->  ( invg `  K )  =  ( y  e.  ( Base `  K
)  |->  ( iota_ x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) ) )
224, 21syl 14 . 2  |-  ( ph  ->  ( invg `  K )  =  ( y  e.  ( Base `  K )  |->  ( iota_ x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) ) )
23 eqid 2177 . . . 4  |-  ( Base `  L )  =  (
Base `  L )
24 eqid 2177 . . . 4  |-  ( +g  `  L )  =  ( +g  `  L )
25 eqid 2177 . . . 4  |-  ( 0g
`  L )  =  ( 0g `  L
)
26 eqid 2177 . . . 4  |-  ( invg `  L )  =  ( invg `  L )
2723, 24, 25, 26grpinvfvalg 12915 . . 3  |-  ( L  e.  W  ->  ( invg `  L )  =  ( y  e.  ( Base `  L
)  |->  ( iota_ x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
285, 27syl 14 . 2  |-  ( ph  ->  ( invg `  L )  =  ( y  e.  ( Base `  L )  |->  ( iota_ x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
2916, 22, 283eqtr4d 2220 1  |-  ( ph  ->  ( invg `  K )  =  ( invg `  L
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    |-> cmpt 4065   ` cfv 5217   iota_crio 5830  (class class class)co 5875   Basecbs 12462   +g cplusg 12536   0gc0g 12705   invgcminusg 12878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-inn 8920  df-ndx 12465  df-slot 12466  df-base 12468  df-0g 12707  df-minusg 12881
This theorem is referenced by:  grpsubpropdg  12974  grpsubpropd2  12975  mulgpropdg  13025  invrpropdg  13318
  Copyright terms: Public domain W3C validator