Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspc3ev | Unicode version |
Description: 3-variable restricted existentional specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012.) |
Ref | Expression |
---|---|
rspc3v.1 | |
rspc3v.2 | |
rspc3v.3 |
Ref | Expression |
---|---|
rspc3ev |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 995 | . 2 | |
2 | simpl2 996 | . 2 | |
3 | rspc3v.3 | . . . 4 | |
4 | 3 | rspcev 2834 | . . 3 |
5 | 4 | 3ad2antl3 1156 | . 2 |
6 | rspc3v.1 | . . . 4 | |
7 | 6 | rexbidv 2471 | . . 3 |
8 | rspc3v.2 | . . . 4 | |
9 | 8 | rexbidv 2471 | . . 3 |
10 | 7, 9 | rspc2ev 2849 | . 2 |
11 | 1, 2, 5, 10 | syl3anc 1233 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |