ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc2ev Unicode version

Theorem rspc2ev 2902
Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.)
Hypotheses
Ref Expression
rspc2v.1  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
rspc2v.2  |-  ( y  =  B  ->  ( ch 
<->  ps ) )
Assertion
Ref Expression
rspc2ev  |-  ( ( A  e.  C  /\  B  e.  D  /\  ps )  ->  E. x  e.  C  E. y  e.  D  ph )
Distinct variable groups:    x, y, A   
y, B    x, C    x, D, y    ch, x    ps, y
Allowed substitution hints:    ph( x, y)    ps( x)    ch( y)    B( x)    C( y)

Proof of Theorem rspc2ev
StepHypRef Expression
1 rspc2v.2 . . . . 5  |-  ( y  =  B  ->  ( ch 
<->  ps ) )
21rspcev 2887 . . . 4  |-  ( ( B  e.  D  /\  ps )  ->  E. y  e.  D  ch )
32anim2i 342 . . 3  |-  ( ( A  e.  C  /\  ( B  e.  D  /\  ps ) )  -> 
( A  e.  C  /\  E. y  e.  D  ch ) )
433impb 1204 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  ps )  ->  ( A  e.  C  /\  E. y  e.  D  ch ) )
5 rspc2v.1 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
65rexbidv 2511 . . 3  |-  ( x  =  A  ->  ( E. y  e.  D  ph  <->  E. y  e.  D  ch ) )
76rspcev 2887 . 2  |-  ( ( A  e.  C  /\  E. y  e.  D  ch )  ->  E. x  e.  C  E. y  e.  D  ph )
84, 7syl 14 1  |-  ( ( A  e.  C  /\  B  e.  D  /\  ps )  ->  E. x  e.  C  E. y  e.  D  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 983    = wceq 1375    e. wcel 2180   E.wrex 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494  df-v 2781
This theorem is referenced by:  rspc3ev  2904  opelxp  4726  rspceov  6017  2dom  6928  apreim  8718  hashdmprop2dom  11033  fun2dmnop0  11036  addcn2  11787  mulcn2  11789  divalglemnn  12395  bezoutlema  12486  bezoutlemb  12487  pythagtriplem18  12770  pczpre  12786  pcdiv  12791  4sqlem3  12879  4sqlem4  12881  4sqlem12  12891  isnzr2  14113  txuni2  14895  txopn  14904  txdis  14916  txdis1cn  14917  xmettxlem  15148  elplyr  15379  2irrexpq  15615  2irrexpqap  15617  2sqlem2  15759  2sqlem8  15767  umgrvad2edg  15974
  Copyright terms: Public domain W3C validator