| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc2ev | Unicode version | ||
| Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.) |
| Ref | Expression |
|---|---|
| rspc2v.1 |
|
| rspc2v.2 |
|
| Ref | Expression |
|---|---|
| rspc2ev |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2v.2 |
. . . . 5
| |
| 2 | 1 | rspcev 2887 |
. . . 4
|
| 3 | 2 | anim2i 342 |
. . 3
|
| 4 | 3 | 3impb 1204 |
. 2
|
| 5 | rspc2v.1 |
. . . 4
| |
| 6 | 5 | rexbidv 2511 |
. . 3
|
| 7 | 6 | rspcev 2887 |
. 2
|
| 8 | 4, 7 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-v 2781 |
| This theorem is referenced by: rspc3ev 2904 opelxp 4726 rspceov 6017 2dom 6928 apreim 8718 hashdmprop2dom 11033 fun2dmnop0 11036 addcn2 11787 mulcn2 11789 divalglemnn 12395 bezoutlema 12486 bezoutlemb 12487 pythagtriplem18 12770 pczpre 12786 pcdiv 12791 4sqlem3 12879 4sqlem4 12881 4sqlem12 12891 isnzr2 14113 txuni2 14895 txopn 14904 txdis 14916 txdis1cn 14917 xmettxlem 15148 elplyr 15379 2irrexpq 15615 2irrexpqap 15617 2sqlem2 15759 2sqlem8 15767 umgrvad2edg 15974 |
| Copyright terms: Public domain | W3C validator |