ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc2ev Unicode version

Theorem rspc2ev 2849
Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.)
Hypotheses
Ref Expression
rspc2v.1  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
rspc2v.2  |-  ( y  =  B  ->  ( ch 
<->  ps ) )
Assertion
Ref Expression
rspc2ev  |-  ( ( A  e.  C  /\  B  e.  D  /\  ps )  ->  E. x  e.  C  E. y  e.  D  ph )
Distinct variable groups:    x, y, A   
y, B    x, C    x, D, y    ch, x    ps, y
Allowed substitution hints:    ph( x, y)    ps( x)    ch( y)    B( x)    C( y)

Proof of Theorem rspc2ev
StepHypRef Expression
1 rspc2v.2 . . . . 5  |-  ( y  =  B  ->  ( ch 
<->  ps ) )
21rspcev 2834 . . . 4  |-  ( ( B  e.  D  /\  ps )  ->  E. y  e.  D  ch )
32anim2i 340 . . 3  |-  ( ( A  e.  C  /\  ( B  e.  D  /\  ps ) )  -> 
( A  e.  C  /\  E. y  e.  D  ch ) )
433impb 1194 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  ps )  ->  ( A  e.  C  /\  E. y  e.  D  ch ) )
5 rspc2v.1 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
65rexbidv 2471 . . 3  |-  ( x  =  A  ->  ( E. y  e.  D  ph  <->  E. y  e.  D  ch ) )
76rspcev 2834 . 2  |-  ( ( A  e.  C  /\  E. y  e.  D  ch )  ->  E. x  e.  C  E. y  e.  D  ph )
84, 7syl 14 1  |-  ( ( A  e.  C  /\  B  e.  D  /\  ps )  ->  E. x  e.  C  E. y  e.  D  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   E.wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732
This theorem is referenced by:  rspc3ev  2851  opelxp  4641  rspceov  5895  2dom  6783  apreim  8522  addcn2  11273  mulcn2  11275  divalglemnn  11877  bezoutlema  11954  bezoutlemb  11955  pythagtriplem18  12235  pczpre  12251  pcdiv  12256  4sqlem3  12342  4sqlem4  12344  txuni2  13050  txopn  13059  txdis  13071  txdis1cn  13072  xmettxlem  13303  2irrexpq  13688  2irrexpqap  13690  2sqlem2  13745  2sqlem8  13753
  Copyright terms: Public domain W3C validator