| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc2ev | Unicode version | ||
| Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.) |
| Ref | Expression |
|---|---|
| rspc2v.1 |
|
| rspc2v.2 |
|
| Ref | Expression |
|---|---|
| rspc2ev |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2v.2 |
. . . . 5
| |
| 2 | 1 | rspcev 2868 |
. . . 4
|
| 3 | 2 | anim2i 342 |
. . 3
|
| 4 | 3 | 3impb 1201 |
. 2
|
| 5 | rspc2v.1 |
. . . 4
| |
| 6 | 5 | rexbidv 2498 |
. . 3
|
| 7 | 6 | rspcev 2868 |
. 2
|
| 8 | 4, 7 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 |
| This theorem is referenced by: rspc3ev 2885 opelxp 4694 rspceov 5966 2dom 6866 apreim 8633 addcn2 11478 mulcn2 11480 divalglemnn 12086 bezoutlema 12177 bezoutlemb 12178 pythagtriplem18 12461 pczpre 12477 pcdiv 12482 4sqlem3 12570 4sqlem4 12572 4sqlem12 12582 isnzr2 13766 txuni2 14518 txopn 14527 txdis 14539 txdis1cn 14540 xmettxlem 14771 elplyr 15002 2irrexpq 15238 2irrexpqap 15240 2sqlem2 15382 2sqlem8 15390 |
| Copyright terms: Public domain | W3C validator |