Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspc2ev | Unicode version |
Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | |
rspc2v.2 |
Ref | Expression |
---|---|
rspc2ev |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.2 | . . . . 5 | |
2 | 1 | rspcev 2816 | . . . 4 |
3 | 2 | anim2i 340 | . . 3 |
4 | 3 | 3impb 1181 | . 2 |
5 | rspc2v.1 | . . . 4 | |
6 | 5 | rexbidv 2458 | . . 3 |
7 | 6 | rspcev 2816 | . 2 |
8 | 4, 7 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1335 wcel 2128 wrex 2436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 |
This theorem is referenced by: rspc3ev 2833 opelxp 4613 rspceov 5857 2dom 6743 apreim 8461 addcn2 11189 mulcn2 11191 divalglemnn 11790 bezoutlema 11863 bezoutlemb 11864 txuni2 12616 txopn 12625 txdis 12637 txdis1cn 12638 xmettxlem 12869 2irrexpq 13253 2irrexpqap 13255 |
Copyright terms: Public domain | W3C validator |