Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspc2ev | Unicode version |
Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | |
rspc2v.2 |
Ref | Expression |
---|---|
rspc2ev |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.2 | . . . . 5 | |
2 | 1 | rspcev 2834 | . . . 4 |
3 | 2 | anim2i 340 | . . 3 |
4 | 3 | 3impb 1194 | . 2 |
5 | rspc2v.1 | . . . 4 | |
6 | 5 | rexbidv 2471 | . . 3 |
7 | 6 | rspcev 2834 | . 2 |
8 | 4, 7 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 |
This theorem is referenced by: rspc3ev 2851 opelxp 4641 rspceov 5895 2dom 6783 apreim 8522 addcn2 11273 mulcn2 11275 divalglemnn 11877 bezoutlema 11954 bezoutlemb 11955 pythagtriplem18 12235 pczpre 12251 pcdiv 12256 4sqlem3 12342 4sqlem4 12344 txuni2 13050 txopn 13059 txdis 13071 txdis1cn 13072 xmettxlem 13303 2irrexpq 13688 2irrexpqap 13690 2sqlem2 13745 2sqlem8 13753 |
Copyright terms: Public domain | W3C validator |