Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspc2ev | Unicode version |
Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | |
rspc2v.2 |
Ref | Expression |
---|---|
rspc2ev |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.2 | . . . . 5 | |
2 | 1 | rspcev 2829 | . . . 4 |
3 | 2 | anim2i 340 | . . 3 |
4 | 3 | 3impb 1189 | . 2 |
5 | rspc2v.1 | . . . 4 | |
6 | 5 | rexbidv 2466 | . . 3 |
7 | 6 | rspcev 2829 | . 2 |
8 | 4, 7 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wrex 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-v 2727 |
This theorem is referenced by: rspc3ev 2846 opelxp 4633 rspceov 5880 2dom 6767 apreim 8497 addcn2 11247 mulcn2 11249 divalglemnn 11851 bezoutlema 11928 bezoutlemb 11929 pythagtriplem18 12209 pczpre 12225 pcdiv 12230 4sqlem3 12316 4sqlem4 12318 txuni2 12856 txopn 12865 txdis 12877 txdis1cn 12878 xmettxlem 13109 2irrexpq 13494 2irrexpqap 13496 2sqlem2 13551 2sqlem8 13559 |
Copyright terms: Public domain | W3C validator |