ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc2ev Unicode version

Theorem rspc2ev 2858
Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.)
Hypotheses
Ref Expression
rspc2v.1  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
rspc2v.2  |-  ( y  =  B  ->  ( ch 
<->  ps ) )
Assertion
Ref Expression
rspc2ev  |-  ( ( A  e.  C  /\  B  e.  D  /\  ps )  ->  E. x  e.  C  E. y  e.  D  ph )
Distinct variable groups:    x, y, A   
y, B    x, C    x, D, y    ch, x    ps, y
Allowed substitution hints:    ph( x, y)    ps( x)    ch( y)    B( x)    C( y)

Proof of Theorem rspc2ev
StepHypRef Expression
1 rspc2v.2 . . . . 5  |-  ( y  =  B  ->  ( ch 
<->  ps ) )
21rspcev 2843 . . . 4  |-  ( ( B  e.  D  /\  ps )  ->  E. y  e.  D  ch )
32anim2i 342 . . 3  |-  ( ( A  e.  C  /\  ( B  e.  D  /\  ps ) )  -> 
( A  e.  C  /\  E. y  e.  D  ch ) )
433impb 1199 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  ps )  ->  ( A  e.  C  /\  E. y  e.  D  ch ) )
5 rspc2v.1 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
65rexbidv 2478 . . 3  |-  ( x  =  A  ->  ( E. y  e.  D  ph  <->  E. y  e.  D  ch ) )
76rspcev 2843 . 2  |-  ( ( A  e.  C  /\  E. y  e.  D  ch )  ->  E. x  e.  C  E. y  e.  D  ph )
84, 7syl 14 1  |-  ( ( A  e.  C  /\  B  e.  D  /\  ps )  ->  E. x  e.  C  E. y  e.  D  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741
This theorem is referenced by:  rspc3ev  2860  opelxp  4658  rspceov  5919  2dom  6807  apreim  8562  addcn2  11320  mulcn2  11322  divalglemnn  11925  bezoutlema  12002  bezoutlemb  12003  pythagtriplem18  12283  pczpre  12299  pcdiv  12304  4sqlem3  12390  4sqlem4  12392  txuni2  13795  txopn  13804  txdis  13816  txdis1cn  13817  xmettxlem  14048  2irrexpq  14433  2irrexpqap  14435  2sqlem2  14501  2sqlem8  14509
  Copyright terms: Public domain W3C validator