ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc3v Unicode version

Theorem rspc3v 2892
Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.)
Hypotheses
Ref Expression
rspc3v.1  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
rspc3v.2  |-  ( y  =  B  ->  ( ch 
<->  th ) )
rspc3v.3  |-  ( z  =  C  ->  ( th 
<->  ps ) )
Assertion
Ref Expression
rspc3v  |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T )  ->  ( A. x  e.  R  A. y  e.  S  A. z  e.  T  ph  ->  ps ) )
Distinct variable groups:    ps, z    ch, x    th, y    x, y, z, A    y, B, z    z, C    x, R    x, S, y    x, T, y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y)    ch( y,
z)    th( x, z)    B( x)    C( x, y)    R( y, z)    S( z)

Proof of Theorem rspc3v
StepHypRef Expression
1 rspc3v.1 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
21ralbidv 2505 . . . 4  |-  ( x  =  A  ->  ( A. z  e.  T  ph  <->  A. z  e.  T  ch ) )
3 rspc3v.2 . . . . 5  |-  ( y  =  B  ->  ( ch 
<->  th ) )
43ralbidv 2505 . . . 4  |-  ( y  =  B  ->  ( A. z  e.  T  ch 
<-> 
A. z  e.  T  th ) )
52, 4rspc2v 2889 . . 3  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( A. x  e.  R  A. y  e.  S  A. z  e.  T  ph  ->  A. z  e.  T  th )
)
6 rspc3v.3 . . . 4  |-  ( z  =  C  ->  ( th 
<->  ps ) )
76rspcv 2872 . . 3  |-  ( C  e.  T  ->  ( A. z  e.  T  th  ->  ps ) )
85, 7sylan9 409 . 2  |-  ( ( ( A  e.  R  /\  B  e.  S
)  /\  C  e.  T )  ->  ( A. x  e.  R  A. y  e.  S  A. z  e.  T  ph 
->  ps ) )
983impa 1196 1  |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T )  ->  ( A. x  e.  R  A. y  e.  S  A. z  e.  T  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   A.wral 2483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773
This theorem is referenced by:  swopolem  4351  isopolem  5890  isosolem  5892  caovassg  6104  caovcang  6107  caovordig  6111  caovordg  6113  caovdig  6120  caovdirg  6123  caoftrn  6190  sgrpass  13211  rngdi  13673  rngdir  13674  islmodd  14026  rmodislmodlem  14083  rmodislmod  14084  lssclg  14097  psmettri2  14771  xmettri2  14804
  Copyright terms: Public domain W3C validator