ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc3v Unicode version

Theorem rspc3v 2846
Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.)
Hypotheses
Ref Expression
rspc3v.1  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
rspc3v.2  |-  ( y  =  B  ->  ( ch 
<->  th ) )
rspc3v.3  |-  ( z  =  C  ->  ( th 
<->  ps ) )
Assertion
Ref Expression
rspc3v  |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T )  ->  ( A. x  e.  R  A. y  e.  S  A. z  e.  T  ph  ->  ps ) )
Distinct variable groups:    ps, z    ch, x    th, y    x, y, z, A    y, B, z    z, C    x, R    x, S, y    x, T, y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y)    ch( y,
z)    th( x, z)    B( x)    C( x, y)    R( y, z)    S( z)

Proof of Theorem rspc3v
StepHypRef Expression
1 rspc3v.1 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
21ralbidv 2466 . . . 4  |-  ( x  =  A  ->  ( A. z  e.  T  ph  <->  A. z  e.  T  ch ) )
3 rspc3v.2 . . . . 5  |-  ( y  =  B  ->  ( ch 
<->  th ) )
43ralbidv 2466 . . . 4  |-  ( y  =  B  ->  ( A. z  e.  T  ch 
<-> 
A. z  e.  T  th ) )
52, 4rspc2v 2843 . . 3  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( A. x  e.  R  A. y  e.  S  A. z  e.  T  ph  ->  A. z  e.  T  th )
)
6 rspc3v.3 . . . 4  |-  ( z  =  C  ->  ( th 
<->  ps ) )
76rspcv 2826 . . 3  |-  ( C  e.  T  ->  ( A. z  e.  T  th  ->  ps ) )
85, 7sylan9 407 . 2  |-  ( ( ( A  e.  R  /\  B  e.  S
)  /\  C  e.  T )  ->  ( A. x  e.  R  A. y  e.  S  A. z  e.  T  ph 
->  ps ) )
983impa 1184 1  |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T )  ->  ( A. x  e.  R  A. y  e.  S  A. z  e.  T  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728
This theorem is referenced by:  swopolem  4283  isopolem  5790  isosolem  5792  caovassg  6000  caovcang  6003  caovordig  6007  caovordg  6009  caovdig  6016  caovdirg  6019  caoftrn  6075  psmettri2  12968  xmettri2  13001
  Copyright terms: Public domain W3C validator