Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspc3v | Unicode version |
Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.) |
Ref | Expression |
---|---|
rspc3v.1 | |
rspc3v.2 | |
rspc3v.3 |
Ref | Expression |
---|---|
rspc3v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc3v.1 | . . . . 5 | |
2 | 1 | ralbidv 2466 | . . . 4 |
3 | rspc3v.2 | . . . . 5 | |
4 | 3 | ralbidv 2466 | . . . 4 |
5 | 2, 4 | rspc2v 2843 | . . 3 |
6 | rspc3v.3 | . . . 4 | |
7 | 6 | rspcv 2826 | . . 3 |
8 | 5, 7 | sylan9 407 | . 2 |
9 | 8 | 3impa 1184 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 |
This theorem is referenced by: swopolem 4283 isopolem 5790 isosolem 5792 caovassg 6000 caovcang 6003 caovordig 6007 caovordg 6009 caovdig 6016 caovdirg 6019 caoftrn 6075 psmettri2 12968 xmettri2 13001 |
Copyright terms: Public domain | W3C validator |