ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc3v Unicode version

Theorem rspc3v 2872
Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.)
Hypotheses
Ref Expression
rspc3v.1  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
rspc3v.2  |-  ( y  =  B  ->  ( ch 
<->  th ) )
rspc3v.3  |-  ( z  =  C  ->  ( th 
<->  ps ) )
Assertion
Ref Expression
rspc3v  |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T )  ->  ( A. x  e.  R  A. y  e.  S  A. z  e.  T  ph  ->  ps ) )
Distinct variable groups:    ps, z    ch, x    th, y    x, y, z, A    y, B, z    z, C    x, R    x, S, y    x, T, y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y)    ch( y,
z)    th( x, z)    B( x)    C( x, y)    R( y, z)    S( z)

Proof of Theorem rspc3v
StepHypRef Expression
1 rspc3v.1 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
21ralbidv 2490 . . . 4  |-  ( x  =  A  ->  ( A. z  e.  T  ph  <->  A. z  e.  T  ch ) )
3 rspc3v.2 . . . . 5  |-  ( y  =  B  ->  ( ch 
<->  th ) )
43ralbidv 2490 . . . 4  |-  ( y  =  B  ->  ( A. z  e.  T  ch 
<-> 
A. z  e.  T  th ) )
52, 4rspc2v 2869 . . 3  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( A. x  e.  R  A. y  e.  S  A. z  e.  T  ph  ->  A. z  e.  T  th )
)
6 rspc3v.3 . . . 4  |-  ( z  =  C  ->  ( th 
<->  ps ) )
76rspcv 2852 . . 3  |-  ( C  e.  T  ->  ( A. z  e.  T  th  ->  ps ) )
85, 7sylan9 409 . 2  |-  ( ( ( A  e.  R  /\  B  e.  S
)  /\  C  e.  T )  ->  ( A. x  e.  R  A. y  e.  S  A. z  e.  T  ph 
->  ps ) )
983impa 1196 1  |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T )  ->  ( A. x  e.  R  A. y  e.  S  A. z  e.  T  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-v 2754
This theorem is referenced by:  swopolem  4323  isopolem  5843  isosolem  5845  caovassg  6054  caovcang  6057  caovordig  6061  caovordg  6063  caovdig  6070  caovdirg  6073  caoftrn  6131  sgrpass  12868  rngdi  13291  rngdir  13292  islmodd  13606  rmodislmodlem  13663  rmodislmod  13664  lssclg  13677  psmettri2  14280  xmettri2  14313
  Copyright terms: Public domain W3C validator