| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspceeqv | Unicode version | ||
| Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.) |
| Ref | Expression |
|---|---|
| rspceeqv.1 |
|
| Ref | Expression |
|---|---|
| rspceeqv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspceeqv.1 |
. . 3
| |
| 2 | 1 | eqeq2d 2217 |
. 2
|
| 3 | 2 | rspcev 2877 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 |
| This theorem is referenced by: elixpsn 6822 ixpsnf1o 6823 elfir 7075 0ct 7209 ctmlemr 7210 ctssdclemn0 7212 fodju0 7249 mertenslemi1 11846 mertenslem2 11847 nninfctlemfo 12361 pcprmpw 12657 1arithlem4 12689 ctiunctlemfo 12810 elrestr 13079 lss1d 14145 lspsn 14178 znf1o 14413 restopnb 14653 mopnex 14977 metrest 14978 mpodvdsmulf1o 15462 lgsquadlem1 15554 2sqlem2 15592 mul2sq 15593 2sqlem3 15594 2sqlem9 15601 2sqlem10 15602 nnnninfex 15959 |
| Copyright terms: Public domain | W3C validator |