| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspceeqv | Unicode version | ||
| Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.) |
| Ref | Expression |
|---|---|
| rspceeqv.1 |
|
| Ref | Expression |
|---|---|
| rspceeqv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspceeqv.1 |
. . 3
| |
| 2 | 1 | eqeq2d 2219 |
. 2
|
| 3 | 2 | rspcev 2884 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 |
| This theorem is referenced by: elixpsn 6845 ixpsnf1o 6846 elfir 7101 0ct 7235 ctmlemr 7236 ctssdclemn0 7238 fodju0 7275 ccats1pfxeqrex 11206 mertenslemi1 11961 mertenslem2 11962 nninfctlemfo 12476 pcprmpw 12772 1arithlem4 12804 ctiunctlemfo 12925 elrestr 13194 lss1d 14260 lspsn 14293 znf1o 14528 restopnb 14768 mopnex 15092 metrest 15093 mpodvdsmulf1o 15577 lgsquadlem1 15669 2sqlem2 15707 mul2sq 15708 2sqlem3 15709 2sqlem9 15716 2sqlem10 15717 nnnninfex 16161 |
| Copyright terms: Public domain | W3C validator |