| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspceeqv | Unicode version | ||
| Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.) |
| Ref | Expression |
|---|---|
| rspceeqv.1 |
|
| Ref | Expression |
|---|---|
| rspceeqv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspceeqv.1 |
. . 3
| |
| 2 | 1 | eqeq2d 2217 |
. 2
|
| 3 | 2 | rspcev 2877 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 |
| This theorem is referenced by: elixpsn 6824 ixpsnf1o 6825 elfir 7077 0ct 7211 ctmlemr 7212 ctssdclemn0 7214 fodju0 7251 mertenslemi1 11879 mertenslem2 11880 nninfctlemfo 12394 pcprmpw 12690 1arithlem4 12722 ctiunctlemfo 12843 elrestr 13112 lss1d 14178 lspsn 14211 znf1o 14446 restopnb 14686 mopnex 15010 metrest 15011 mpodvdsmulf1o 15495 lgsquadlem1 15587 2sqlem2 15625 mul2sq 15626 2sqlem3 15627 2sqlem9 15634 2sqlem10 15635 nnnninfex 15996 |
| Copyright terms: Public domain | W3C validator |