| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspceeqv | Unicode version | ||
| Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.) |
| Ref | Expression |
|---|---|
| rspceeqv.1 |
|
| Ref | Expression |
|---|---|
| rspceeqv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspceeqv.1 |
. . 3
| |
| 2 | 1 | eqeq2d 2241 |
. 2
|
| 3 | 2 | rspcev 2907 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 |
| This theorem is referenced by: elixpsn 6882 ixpsnf1o 6883 elfir 7140 0ct 7274 ctmlemr 7275 ctssdclemn0 7277 fodju0 7314 ccats1pfxeqrex 11247 mertenslemi1 12046 mertenslem2 12047 nninfctlemfo 12561 pcprmpw 12857 1arithlem4 12889 ctiunctlemfo 13010 elrestr 13280 lss1d 14347 lspsn 14380 znf1o 14615 restopnb 14855 mopnex 15179 metrest 15180 mpodvdsmulf1o 15664 lgsquadlem1 15756 2sqlem2 15794 mul2sq 15795 2sqlem3 15796 2sqlem9 15803 2sqlem10 15804 nnnninfex 16388 |
| Copyright terms: Public domain | W3C validator |