ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspceeqv Unicode version

Theorem rspceeqv 2860
Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.)
Hypothesis
Ref Expression
rspceeqv.1  |-  ( x  =  A  ->  C  =  D )
Assertion
Ref Expression
rspceeqv  |-  ( ( A  e.  B  /\  E  =  D )  ->  E. x  e.  B  E  =  C )
Distinct variable groups:    x, A    x, B    x, D    x, E
Allowed substitution hint:    C( x)

Proof of Theorem rspceeqv
StepHypRef Expression
1 rspceeqv.1 . . 3  |-  ( x  =  A  ->  C  =  D )
21eqeq2d 2189 . 2  |-  ( x  =  A  ->  ( E  =  C  <->  E  =  D ) )
32rspcev 2842 1  |-  ( ( A  e.  B  /\  E  =  D )  ->  E. x  e.  B  E  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   E.wrex 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2740
This theorem is referenced by:  elixpsn  6735  ixpsnf1o  6736  elfir  6972  0ct  7106  ctmlemr  7107  ctssdclemn0  7109  fodju0  7145  mertenslemi1  11543  mertenslem2  11544  pcprmpw  12333  1arithlem4  12364  ctiunctlemfo  12440  elrestr  12696  restopnb  13684  mopnex  14008  metrest  14009  2sqlem2  14465  mul2sq  14466  2sqlem3  14467  2sqlem9  14474  2sqlem10  14475
  Copyright terms: Public domain W3C validator