ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zindd Unicode version

Theorem zindd 9435
Description: Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
zindd.1  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
zindd.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
zindd.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  ta ) )
zindd.4  |-  ( x  =  -u y  ->  ( ph 
<->  th ) )
zindd.5  |-  ( x  =  A  ->  ( ph 
<->  et ) )
zindd.6  |-  ( ze 
->  ps )
zindd.7  |-  ( ze 
->  ( y  e.  NN0  ->  ( ch  ->  ta ) ) )
zindd.8  |-  ( ze 
->  ( y  e.  NN  ->  ( ch  ->  th )
) )
Assertion
Ref Expression
zindd  |-  ( ze 
->  ( A  e.  ZZ  ->  et ) )
Distinct variable groups:    x, A    ch, x    et, x    ph, y    ps, x    ta, x    th, x    x, y, ze
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    et( y)    A( y)

Proof of Theorem zindd
StepHypRef Expression
1 znegcl 9348 . . . . . . 7  |-  ( y  e.  ZZ  ->  -u y  e.  ZZ )
2 elznn0nn 9331 . . . . . . 7  |-  ( -u y  e.  ZZ  <->  ( -u y  e.  NN0  \/  ( -u y  e.  RR  /\  -u -u y  e.  NN ) ) )
31, 2sylib 122 . . . . . 6  |-  ( y  e.  ZZ  ->  ( -u y  e.  NN0  \/  ( -u y  e.  RR  /\  -u -u y  e.  NN ) ) )
4 simpr 110 . . . . . . 7  |-  ( (
-u y  e.  RR  /\  -u -u y  e.  NN )  ->  -u -u y  e.  NN )
54orim2i 762 . . . . . 6  |-  ( (
-u y  e.  NN0  \/  ( -u y  e.  RR  /\  -u -u y  e.  NN ) )  -> 
( -u y  e.  NN0  \/  -u -u y  e.  NN ) )
63, 5syl 14 . . . . 5  |-  ( y  e.  ZZ  ->  ( -u y  e.  NN0  \/  -u -u y  e.  NN ) )
7 zcn 9322 . . . . . . . 8  |-  ( y  e.  ZZ  ->  y  e.  CC )
87negnegd 8321 . . . . . . 7  |-  ( y  e.  ZZ  ->  -u -u y  =  y )
98eleq1d 2262 . . . . . 6  |-  ( y  e.  ZZ  ->  ( -u -u y  e.  NN  <->  y  e.  NN ) )
109orbi2d 791 . . . . 5  |-  ( y  e.  ZZ  ->  (
( -u y  e.  NN0  \/  -u -u y  e.  NN ) 
<->  ( -u y  e. 
NN0  \/  y  e.  NN ) ) )
116, 10mpbid 147 . . . 4  |-  ( y  e.  ZZ  ->  ( -u y  e.  NN0  \/  y  e.  NN )
)
12 zindd.1 . . . . . . . 8  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
1312imbi2d 230 . . . . . . 7  |-  ( x  =  0  ->  (
( ze  ->  ph )  <->  ( ze  ->  ps )
) )
14 zindd.2 . . . . . . . 8  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
1514imbi2d 230 . . . . . . 7  |-  ( x  =  y  ->  (
( ze  ->  ph )  <->  ( ze  ->  ch )
) )
16 zindd.3 . . . . . . . 8  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  ta ) )
1716imbi2d 230 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
( ze  ->  ph )  <->  ( ze  ->  ta )
) )
18 zindd.4 . . . . . . . 8  |-  ( x  =  -u y  ->  ( ph 
<->  th ) )
1918imbi2d 230 . . . . . . 7  |-  ( x  =  -u y  ->  (
( ze  ->  ph )  <->  ( ze  ->  th )
) )
20 zindd.6 . . . . . . 7  |-  ( ze 
->  ps )
21 zindd.7 . . . . . . . . 9  |-  ( ze 
->  ( y  e.  NN0  ->  ( ch  ->  ta ) ) )
2221com12 30 . . . . . . . 8  |-  ( y  e.  NN0  ->  ( ze 
->  ( ch  ->  ta ) ) )
2322a2d 26 . . . . . . 7  |-  ( y  e.  NN0  ->  ( ( ze  ->  ch )  ->  ( ze  ->  ta ) ) )
2413, 15, 17, 19, 20, 23nn0ind 9431 . . . . . 6  |-  ( -u y  e.  NN0  ->  ( ze  ->  th ) )
2524com12 30 . . . . 5  |-  ( ze 
->  ( -u y  e. 
NN0  ->  th ) )
26 nnnn0 9247 . . . . . . . 8  |-  ( y  e.  NN  ->  y  e.  NN0 )
2713, 15, 17, 15, 20, 23nn0ind 9431 . . . . . . . 8  |-  ( y  e.  NN0  ->  ( ze 
->  ch ) )
2826, 27syl 14 . . . . . . 7  |-  ( y  e.  NN  ->  ( ze  ->  ch ) )
2928com12 30 . . . . . 6  |-  ( ze 
->  ( y  e.  NN  ->  ch ) )
30 zindd.8 . . . . . 6  |-  ( ze 
->  ( y  e.  NN  ->  ( ch  ->  th )
) )
3129, 30mpdd 41 . . . . 5  |-  ( ze 
->  ( y  e.  NN  ->  th ) )
3225, 31jaod 718 . . . 4  |-  ( ze 
->  ( ( -u y  e.  NN0  \/  y  e.  NN )  ->  th )
)
3311, 32syl5 32 . . 3  |-  ( ze 
->  ( y  e.  ZZ  ->  th ) )
3433ralrimiv 2566 . 2  |-  ( ze 
->  A. y  e.  ZZ  th )
35 znegcl 9348 . . . . 5  |-  ( x  e.  ZZ  ->  -u x  e.  ZZ )
36 negeq 8212 . . . . . . . . 9  |-  ( y  =  -u x  ->  -u y  =  -u -u x )
37 zcn 9322 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  x  e.  CC )
3837negnegd 8321 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  -u -u x  =  x )
3936, 38sylan9eqr 2248 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  =  -u x )  ->  -u y  =  x )
4039eqcomd 2199 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  =  -u x )  ->  x  =  -u y )
4140, 18syl 14 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  =  -u x )  ->  ( ph  <->  th )
)
4241bicomd 141 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  =  -u x )  ->  ( th  <->  ph ) )
4335, 42rspcdv 2867 . . . 4  |-  ( x  e.  ZZ  ->  ( A. y  e.  ZZ  th 
->  ph ) )
4443com12 30 . . 3  |-  ( A. y  e.  ZZ  th  ->  ( x  e.  ZZ  ->  ph ) )
4544ralrimiv 2566 . 2  |-  ( A. y  e.  ZZ  th  ->  A. x  e.  ZZ  ph )
46 zindd.5 . . 3  |-  ( x  =  A  ->  ( ph 
<->  et ) )
4746rspccv 2861 . 2  |-  ( A. x  e.  ZZ  ph  ->  ( A  e.  ZZ  ->  et ) )
4834, 45, 473syl 17 1  |-  ( ze 
->  ( A  e.  ZZ  ->  et ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   A.wral 2472  (class class class)co 5918   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875   -ucneg 8191   NNcn 8982   NN0cn0 9240   ZZcz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318
This theorem is referenced by:  efexp  11825  pcexp  12447  mulgaddcom  13216  mulginvcom  13217  mulgneg2  13226  mulgass2  13554  cnfldmulg  14064
  Copyright terms: Public domain W3C validator