ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zindd Unicode version

Theorem zindd 9373
Description: Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
zindd.1  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
zindd.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
zindd.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  ta ) )
zindd.4  |-  ( x  =  -u y  ->  ( ph 
<->  th ) )
zindd.5  |-  ( x  =  A  ->  ( ph 
<->  et ) )
zindd.6  |-  ( ze 
->  ps )
zindd.7  |-  ( ze 
->  ( y  e.  NN0  ->  ( ch  ->  ta ) ) )
zindd.8  |-  ( ze 
->  ( y  e.  NN  ->  ( ch  ->  th )
) )
Assertion
Ref Expression
zindd  |-  ( ze 
->  ( A  e.  ZZ  ->  et ) )
Distinct variable groups:    x, A    ch, x    et, x    ph, y    ps, x    ta, x    th, x    x, y, ze
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    et( y)    A( y)

Proof of Theorem zindd
StepHypRef Expression
1 znegcl 9286 . . . . . . 7  |-  ( y  e.  ZZ  ->  -u y  e.  ZZ )
2 elznn0nn 9269 . . . . . . 7  |-  ( -u y  e.  ZZ  <->  ( -u y  e.  NN0  \/  ( -u y  e.  RR  /\  -u -u y  e.  NN ) ) )
31, 2sylib 122 . . . . . 6  |-  ( y  e.  ZZ  ->  ( -u y  e.  NN0  \/  ( -u y  e.  RR  /\  -u -u y  e.  NN ) ) )
4 simpr 110 . . . . . . 7  |-  ( (
-u y  e.  RR  /\  -u -u y  e.  NN )  ->  -u -u y  e.  NN )
54orim2i 761 . . . . . 6  |-  ( (
-u y  e.  NN0  \/  ( -u y  e.  RR  /\  -u -u y  e.  NN ) )  -> 
( -u y  e.  NN0  \/  -u -u y  e.  NN ) )
63, 5syl 14 . . . . 5  |-  ( y  e.  ZZ  ->  ( -u y  e.  NN0  \/  -u -u y  e.  NN ) )
7 zcn 9260 . . . . . . . 8  |-  ( y  e.  ZZ  ->  y  e.  CC )
87negnegd 8261 . . . . . . 7  |-  ( y  e.  ZZ  ->  -u -u y  =  y )
98eleq1d 2246 . . . . . 6  |-  ( y  e.  ZZ  ->  ( -u -u y  e.  NN  <->  y  e.  NN ) )
109orbi2d 790 . . . . 5  |-  ( y  e.  ZZ  ->  (
( -u y  e.  NN0  \/  -u -u y  e.  NN ) 
<->  ( -u y  e. 
NN0  \/  y  e.  NN ) ) )
116, 10mpbid 147 . . . 4  |-  ( y  e.  ZZ  ->  ( -u y  e.  NN0  \/  y  e.  NN )
)
12 zindd.1 . . . . . . . 8  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
1312imbi2d 230 . . . . . . 7  |-  ( x  =  0  ->  (
( ze  ->  ph )  <->  ( ze  ->  ps )
) )
14 zindd.2 . . . . . . . 8  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
1514imbi2d 230 . . . . . . 7  |-  ( x  =  y  ->  (
( ze  ->  ph )  <->  ( ze  ->  ch )
) )
16 zindd.3 . . . . . . . 8  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  ta ) )
1716imbi2d 230 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
( ze  ->  ph )  <->  ( ze  ->  ta )
) )
18 zindd.4 . . . . . . . 8  |-  ( x  =  -u y  ->  ( ph 
<->  th ) )
1918imbi2d 230 . . . . . . 7  |-  ( x  =  -u y  ->  (
( ze  ->  ph )  <->  ( ze  ->  th )
) )
20 zindd.6 . . . . . . 7  |-  ( ze 
->  ps )
21 zindd.7 . . . . . . . . 9  |-  ( ze 
->  ( y  e.  NN0  ->  ( ch  ->  ta ) ) )
2221com12 30 . . . . . . . 8  |-  ( y  e.  NN0  ->  ( ze 
->  ( ch  ->  ta ) ) )
2322a2d 26 . . . . . . 7  |-  ( y  e.  NN0  ->  ( ( ze  ->  ch )  ->  ( ze  ->  ta ) ) )
2413, 15, 17, 19, 20, 23nn0ind 9369 . . . . . 6  |-  ( -u y  e.  NN0  ->  ( ze  ->  th ) )
2524com12 30 . . . . 5  |-  ( ze 
->  ( -u y  e. 
NN0  ->  th ) )
26 nnnn0 9185 . . . . . . . 8  |-  ( y  e.  NN  ->  y  e.  NN0 )
2713, 15, 17, 15, 20, 23nn0ind 9369 . . . . . . . 8  |-  ( y  e.  NN0  ->  ( ze 
->  ch ) )
2826, 27syl 14 . . . . . . 7  |-  ( y  e.  NN  ->  ( ze  ->  ch ) )
2928com12 30 . . . . . 6  |-  ( ze 
->  ( y  e.  NN  ->  ch ) )
30 zindd.8 . . . . . 6  |-  ( ze 
->  ( y  e.  NN  ->  ( ch  ->  th )
) )
3129, 30mpdd 41 . . . . 5  |-  ( ze 
->  ( y  e.  NN  ->  th ) )
3225, 31jaod 717 . . . 4  |-  ( ze 
->  ( ( -u y  e.  NN0  \/  y  e.  NN )  ->  th )
)
3311, 32syl5 32 . . 3  |-  ( ze 
->  ( y  e.  ZZ  ->  th ) )
3433ralrimiv 2549 . 2  |-  ( ze 
->  A. y  e.  ZZ  th )
35 znegcl 9286 . . . . 5  |-  ( x  e.  ZZ  ->  -u x  e.  ZZ )
36 negeq 8152 . . . . . . . . 9  |-  ( y  =  -u x  ->  -u y  =  -u -u x )
37 zcn 9260 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  x  e.  CC )
3837negnegd 8261 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  -u -u x  =  x )
3936, 38sylan9eqr 2232 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  =  -u x )  ->  -u y  =  x )
4039eqcomd 2183 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  =  -u x )  ->  x  =  -u y )
4140, 18syl 14 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  =  -u x )  ->  ( ph  <->  th )
)
4241bicomd 141 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  =  -u x )  ->  ( th  <->  ph ) )
4335, 42rspcdv 2846 . . . 4  |-  ( x  e.  ZZ  ->  ( A. y  e.  ZZ  th 
->  ph ) )
4443com12 30 . . 3  |-  ( A. y  e.  ZZ  th  ->  ( x  e.  ZZ  ->  ph ) )
4544ralrimiv 2549 . 2  |-  ( A. y  e.  ZZ  th  ->  A. x  e.  ZZ  ph )
46 zindd.5 . . 3  |-  ( x  =  A  ->  ( ph 
<->  et ) )
4746rspccv 2840 . 2  |-  ( A. x  e.  ZZ  ph  ->  ( A  e.  ZZ  ->  et ) )
4834, 45, 473syl 17 1  |-  ( ze 
->  ( A  e.  ZZ  ->  et ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148   A.wral 2455  (class class class)co 5877   RRcr 7812   0cc0 7813   1c1 7814    + caddc 7816   -ucneg 8131   NNcn 8921   NN0cn0 9178   ZZcz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256
This theorem is referenced by:  efexp  11692  pcexp  12311  mulgaddcom  13012  mulginvcom  13013  mulgneg2  13022  mulgass2  13240  cnfldmulg  13555
  Copyright terms: Public domain W3C validator