ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zindd Unicode version

Theorem zindd 9565
Description: Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
zindd.1  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
zindd.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
zindd.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  ta ) )
zindd.4  |-  ( x  =  -u y  ->  ( ph 
<->  th ) )
zindd.5  |-  ( x  =  A  ->  ( ph 
<->  et ) )
zindd.6  |-  ( ze 
->  ps )
zindd.7  |-  ( ze 
->  ( y  e.  NN0  ->  ( ch  ->  ta ) ) )
zindd.8  |-  ( ze 
->  ( y  e.  NN  ->  ( ch  ->  th )
) )
Assertion
Ref Expression
zindd  |-  ( ze 
->  ( A  e.  ZZ  ->  et ) )
Distinct variable groups:    x, A    ch, x    et, x    ph, y    ps, x    ta, x    th, x    x, y, ze
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    et( y)    A( y)

Proof of Theorem zindd
StepHypRef Expression
1 znegcl 9477 . . . . . . 7  |-  ( y  e.  ZZ  ->  -u y  e.  ZZ )
2 elznn0nn 9460 . . . . . . 7  |-  ( -u y  e.  ZZ  <->  ( -u y  e.  NN0  \/  ( -u y  e.  RR  /\  -u -u y  e.  NN ) ) )
31, 2sylib 122 . . . . . 6  |-  ( y  e.  ZZ  ->  ( -u y  e.  NN0  \/  ( -u y  e.  RR  /\  -u -u y  e.  NN ) ) )
4 simpr 110 . . . . . . 7  |-  ( (
-u y  e.  RR  /\  -u -u y  e.  NN )  ->  -u -u y  e.  NN )
54orim2i 766 . . . . . 6  |-  ( (
-u y  e.  NN0  \/  ( -u y  e.  RR  /\  -u -u y  e.  NN ) )  -> 
( -u y  e.  NN0  \/  -u -u y  e.  NN ) )
63, 5syl 14 . . . . 5  |-  ( y  e.  ZZ  ->  ( -u y  e.  NN0  \/  -u -u y  e.  NN ) )
7 zcn 9451 . . . . . . . 8  |-  ( y  e.  ZZ  ->  y  e.  CC )
87negnegd 8448 . . . . . . 7  |-  ( y  e.  ZZ  ->  -u -u y  =  y )
98eleq1d 2298 . . . . . 6  |-  ( y  e.  ZZ  ->  ( -u -u y  e.  NN  <->  y  e.  NN ) )
109orbi2d 795 . . . . 5  |-  ( y  e.  ZZ  ->  (
( -u y  e.  NN0  \/  -u -u y  e.  NN ) 
<->  ( -u y  e. 
NN0  \/  y  e.  NN ) ) )
116, 10mpbid 147 . . . 4  |-  ( y  e.  ZZ  ->  ( -u y  e.  NN0  \/  y  e.  NN )
)
12 zindd.1 . . . . . . . 8  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
1312imbi2d 230 . . . . . . 7  |-  ( x  =  0  ->  (
( ze  ->  ph )  <->  ( ze  ->  ps )
) )
14 zindd.2 . . . . . . . 8  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
1514imbi2d 230 . . . . . . 7  |-  ( x  =  y  ->  (
( ze  ->  ph )  <->  ( ze  ->  ch )
) )
16 zindd.3 . . . . . . . 8  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  ta ) )
1716imbi2d 230 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
( ze  ->  ph )  <->  ( ze  ->  ta )
) )
18 zindd.4 . . . . . . . 8  |-  ( x  =  -u y  ->  ( ph 
<->  th ) )
1918imbi2d 230 . . . . . . 7  |-  ( x  =  -u y  ->  (
( ze  ->  ph )  <->  ( ze  ->  th )
) )
20 zindd.6 . . . . . . 7  |-  ( ze 
->  ps )
21 zindd.7 . . . . . . . . 9  |-  ( ze 
->  ( y  e.  NN0  ->  ( ch  ->  ta ) ) )
2221com12 30 . . . . . . . 8  |-  ( y  e.  NN0  ->  ( ze 
->  ( ch  ->  ta ) ) )
2322a2d 26 . . . . . . 7  |-  ( y  e.  NN0  ->  ( ( ze  ->  ch )  ->  ( ze  ->  ta ) ) )
2413, 15, 17, 19, 20, 23nn0ind 9561 . . . . . 6  |-  ( -u y  e.  NN0  ->  ( ze  ->  th ) )
2524com12 30 . . . . 5  |-  ( ze 
->  ( -u y  e. 
NN0  ->  th ) )
26 nnnn0 9376 . . . . . . . 8  |-  ( y  e.  NN  ->  y  e.  NN0 )
2713, 15, 17, 15, 20, 23nn0ind 9561 . . . . . . . 8  |-  ( y  e.  NN0  ->  ( ze 
->  ch ) )
2826, 27syl 14 . . . . . . 7  |-  ( y  e.  NN  ->  ( ze  ->  ch ) )
2928com12 30 . . . . . 6  |-  ( ze 
->  ( y  e.  NN  ->  ch ) )
30 zindd.8 . . . . . 6  |-  ( ze 
->  ( y  e.  NN  ->  ( ch  ->  th )
) )
3129, 30mpdd 41 . . . . 5  |-  ( ze 
->  ( y  e.  NN  ->  th ) )
3225, 31jaod 722 . . . 4  |-  ( ze 
->  ( ( -u y  e.  NN0  \/  y  e.  NN )  ->  th )
)
3311, 32syl5 32 . . 3  |-  ( ze 
->  ( y  e.  ZZ  ->  th ) )
3433ralrimiv 2602 . 2  |-  ( ze 
->  A. y  e.  ZZ  th )
35 znegcl 9477 . . . . 5  |-  ( x  e.  ZZ  ->  -u x  e.  ZZ )
36 negeq 8339 . . . . . . . . 9  |-  ( y  =  -u x  ->  -u y  =  -u -u x )
37 zcn 9451 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  x  e.  CC )
3837negnegd 8448 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  -u -u x  =  x )
3936, 38sylan9eqr 2284 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  =  -u x )  ->  -u y  =  x )
4039eqcomd 2235 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  =  -u x )  ->  x  =  -u y )
4140, 18syl 14 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  =  -u x )  ->  ( ph  <->  th )
)
4241bicomd 141 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  =  -u x )  ->  ( th  <->  ph ) )
4335, 42rspcdv 2910 . . . 4  |-  ( x  e.  ZZ  ->  ( A. y  e.  ZZ  th 
->  ph ) )
4443com12 30 . . 3  |-  ( A. y  e.  ZZ  th  ->  ( x  e.  ZZ  ->  ph ) )
4544ralrimiv 2602 . 2  |-  ( A. y  e.  ZZ  th  ->  A. x  e.  ZZ  ph )
46 zindd.5 . . 3  |-  ( x  =  A  ->  ( ph 
<->  et ) )
4746rspccv 2904 . 2  |-  ( A. x  e.  ZZ  ph  ->  ( A  e.  ZZ  ->  et ) )
4834, 45, 473syl 17 1  |-  ( ze 
->  ( A  e.  ZZ  ->  et ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   A.wral 2508  (class class class)co 6001   RRcr 7998   0cc0 7999   1c1 8000    + caddc 8002   -ucneg 8318   NNcn 9110   NN0cn0 9369   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447
This theorem is referenced by:  efexp  12193  pcexp  12832  mulgaddcom  13683  mulginvcom  13684  mulgneg2  13693  mulgass2  14021  cnfldmulg  14540
  Copyright terms: Public domain W3C validator