| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zindd | Unicode version | ||
| Description: Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| zindd.1 |
|
| zindd.2 |
|
| zindd.3 |
|
| zindd.4 |
|
| zindd.5 |
|
| zindd.6 |
|
| zindd.7 |
|
| zindd.8 |
|
| Ref | Expression |
|---|---|
| zindd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znegcl 9438 |
. . . . . . 7
| |
| 2 | elznn0nn 9421 |
. . . . . . 7
| |
| 3 | 1, 2 | sylib 122 |
. . . . . 6
|
| 4 | simpr 110 |
. . . . . . 7
| |
| 5 | 4 | orim2i 763 |
. . . . . 6
|
| 6 | 3, 5 | syl 14 |
. . . . 5
|
| 7 | zcn 9412 |
. . . . . . . 8
| |
| 8 | 7 | negnegd 8409 |
. . . . . . 7
|
| 9 | 8 | eleq1d 2276 |
. . . . . 6
|
| 10 | 9 | orbi2d 792 |
. . . . 5
|
| 11 | 6, 10 | mpbid 147 |
. . . 4
|
| 12 | zindd.1 |
. . . . . . . 8
| |
| 13 | 12 | imbi2d 230 |
. . . . . . 7
|
| 14 | zindd.2 |
. . . . . . . 8
| |
| 15 | 14 | imbi2d 230 |
. . . . . . 7
|
| 16 | zindd.3 |
. . . . . . . 8
| |
| 17 | 16 | imbi2d 230 |
. . . . . . 7
|
| 18 | zindd.4 |
. . . . . . . 8
| |
| 19 | 18 | imbi2d 230 |
. . . . . . 7
|
| 20 | zindd.6 |
. . . . . . 7
| |
| 21 | zindd.7 |
. . . . . . . . 9
| |
| 22 | 21 | com12 30 |
. . . . . . . 8
|
| 23 | 22 | a2d 26 |
. . . . . . 7
|
| 24 | 13, 15, 17, 19, 20, 23 | nn0ind 9522 |
. . . . . 6
|
| 25 | 24 | com12 30 |
. . . . 5
|
| 26 | nnnn0 9337 |
. . . . . . . 8
| |
| 27 | 13, 15, 17, 15, 20, 23 | nn0ind 9522 |
. . . . . . . 8
|
| 28 | 26, 27 | syl 14 |
. . . . . . 7
|
| 29 | 28 | com12 30 |
. . . . . 6
|
| 30 | zindd.8 |
. . . . . 6
| |
| 31 | 29, 30 | mpdd 41 |
. . . . 5
|
| 32 | 25, 31 | jaod 719 |
. . . 4
|
| 33 | 11, 32 | syl5 32 |
. . 3
|
| 34 | 33 | ralrimiv 2580 |
. 2
|
| 35 | znegcl 9438 |
. . . . 5
| |
| 36 | negeq 8300 |
. . . . . . . . 9
| |
| 37 | zcn 9412 |
. . . . . . . . . 10
| |
| 38 | 37 | negnegd 8409 |
. . . . . . . . 9
|
| 39 | 36, 38 | sylan9eqr 2262 |
. . . . . . . 8
|
| 40 | 39 | eqcomd 2213 |
. . . . . . 7
|
| 41 | 40, 18 | syl 14 |
. . . . . 6
|
| 42 | 41 | bicomd 141 |
. . . . 5
|
| 43 | 35, 42 | rspcdv 2887 |
. . . 4
|
| 44 | 43 | com12 30 |
. . 3
|
| 45 | 44 | ralrimiv 2580 |
. 2
|
| 46 | zindd.5 |
. . 3
| |
| 47 | 46 | rspccv 2881 |
. 2
|
| 48 | 34, 45, 47 | 3syl 17 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 |
| This theorem is referenced by: efexp 12108 pcexp 12747 mulgaddcom 13597 mulginvcom 13598 mulgneg2 13607 mulgass2 13935 cnfldmulg 14453 |
| Copyright terms: Public domain | W3C validator |