| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcedv | Unicode version | ||
| Description: Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| rspcdv.1 |
|
| rspcdv.2 |
|
| Ref | Expression |
|---|---|
| rspcedv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcdv.1 |
. 2
| |
| 2 | rspcdv.2 |
. . 3
| |
| 3 | 2 | biimprd 158 |
. 2
|
| 4 | 1, 3 | rspcimedv 2909 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 |
| This theorem is referenced by: rspcedvd 2913 rexxfrd 4554 enomnilem 7305 enmkvlem 7328 ltexnqq 7595 halfnqq 7597 ltbtwnnqq 7602 genpml 7704 genpmu 7705 genprndl 7708 genprndu 7709 axarch 8078 apreap 8734 |
| Copyright terms: Public domain | W3C validator |