ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspce Unicode version

Theorem rspce 2718
Description: Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro, 11-Oct-2016.)
Hypotheses
Ref Expression
rspc.1  |-  F/ x ps
rspc.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rspce  |-  ( ( A  e.  B  /\  ps )  ->  E. x  e.  B  ph )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem rspce
StepHypRef Expression
1 nfcv 2229 . . . 4  |-  F/_ x A
2 nfv 1467 . . . . 5  |-  F/ x  A  e.  B
3 rspc.1 . . . . 5  |-  F/ x ps
42, 3nfan 1503 . . . 4  |-  F/ x
( A  e.  B  /\  ps )
5 eleq1 2151 . . . . 5  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
6 rspc.2 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
75, 6anbi12d 458 . . . 4  |-  ( x  =  A  ->  (
( x  e.  B  /\  ph )  <->  ( A  e.  B  /\  ps )
) )
81, 4, 7spcegf 2703 . . 3  |-  ( A  e.  B  ->  (
( A  e.  B  /\  ps )  ->  E. x
( x  e.  B  /\  ph ) ) )
98anabsi5 547 . 2  |-  ( ( A  e.  B  /\  ps )  ->  E. x
( x  e.  B  /\  ph ) )
10 df-rex 2366 . 2  |-  ( E. x  e.  B  ph  <->  E. x ( x  e.  B  /\  ph )
)
119, 10sylibr 133 1  |-  ( ( A  e.  B  /\  ps )  ->  E. x  e.  B  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1290   F/wnf 1395   E.wex 1427    e. wcel 1439   E.wrex 2361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rex 2366  df-v 2622
This theorem is referenced by:  rspcev  2723  bezoutlemmain  11326
  Copyright terms: Public domain W3C validator