ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspce Unicode version

Theorem rspce 2872
Description: Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro, 11-Oct-2016.)
Hypotheses
Ref Expression
rspc.1  |-  F/ x ps
rspc.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rspce  |-  ( ( A  e.  B  /\  ps )  ->  E. x  e.  B  ph )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem rspce
StepHypRef Expression
1 nfcv 2348 . . . 4  |-  F/_ x A
2 nfv 1551 . . . . 5  |-  F/ x  A  e.  B
3 rspc.1 . . . . 5  |-  F/ x ps
42, 3nfan 1588 . . . 4  |-  F/ x
( A  e.  B  /\  ps )
5 eleq1 2268 . . . . 5  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
6 rspc.2 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
75, 6anbi12d 473 . . . 4  |-  ( x  =  A  ->  (
( x  e.  B  /\  ph )  <->  ( A  e.  B  /\  ps )
) )
81, 4, 7spcegf 2856 . . 3  |-  ( A  e.  B  ->  (
( A  e.  B  /\  ps )  ->  E. x
( x  e.  B  /\  ph ) ) )
98anabsi5 579 . 2  |-  ( ( A  e.  B  /\  ps )  ->  E. x
( x  e.  B  /\  ph ) )
10 df-rex 2490 . 2  |-  ( E. x  e.  B  ph  <->  E. x ( x  e.  B  /\  ph )
)
119, 10sylibr 134 1  |-  ( ( A  e.  B  /\  ps )  ->  E. x  e.  B  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   F/wnf 1483   E.wex 1515    e. wcel 2176   E.wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774
This theorem is referenced by:  rspcev  2877  bezoutlemmain  12319
  Copyright terms: Public domain W3C validator