| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc | Unicode version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspc.1 |
|
| rspc.2 |
|
| Ref | Expression |
|---|---|
| rspc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2480 |
. 2
| |
| 2 | nfcv 2339 |
. . . 4
| |
| 3 | nfv 1542 |
. . . . 5
| |
| 4 | rspc.1 |
. . . . 5
| |
| 5 | 3, 4 | nfim 1586 |
. . . 4
|
| 6 | eleq1 2259 |
. . . . 5
| |
| 7 | rspc.2 |
. . . . 5
| |
| 8 | 6, 7 | imbi12d 234 |
. . . 4
|
| 9 | 2, 5, 8 | spcgf 2846 |
. . 3
|
| 10 | 9 | pm2.43a 51 |
. 2
|
| 11 | 1, 10 | biimtrid 152 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 |
| This theorem is referenced by: rspcv 2864 rspc2 2879 rspc2vd 3153 pofun 4348 omsinds 4659 fmptcof 5732 fliftfuns 5848 qliftfuns 6687 xpf1o 6914 finexdc 6972 ssfirab 7006 opabfi 7008 iunfidisj 7021 dcfi 7056 cc3 7351 lble 8991 exfzdc 10333 zsupcllemstep 10336 infssuzex 10340 uzsinds 10553 sumeq2 11541 sumfct 11556 sumrbdclem 11559 summodclem3 11562 summodclem2a 11563 zsumdc 11566 fsumgcl 11568 fsum3 11569 fsumf1o 11572 isumss 11573 isumss2 11575 fsum3cvg2 11576 fsumadd 11588 isummulc2 11608 fsum2dlemstep 11616 fisumcom2 11620 fsumshftm 11627 fisum0diag2 11629 fsummulc2 11630 fsum00 11644 fsumabs 11647 fsumrelem 11653 fsumiun 11659 isumshft 11672 mertenslem2 11718 prodeq2 11739 prodrbdclem 11753 prodmodclem3 11757 prodmodclem2a 11758 zproddc 11761 fprodseq 11765 prodfct 11769 fprodf1o 11770 prodssdc 11771 fprodmul 11773 fprodm1s 11783 fprodp1s 11784 fprodabs 11798 fprodap0 11803 fprod2dlemstep 11804 fprodcom2fi 11808 fprodrec 11811 fprodap0f 11818 fprodle 11822 bezoutlemmain 12190 nnwosdc 12231 pcmpt 12537 ctiunctlemudc 12679 gsumfzfsumlemm 14219 iuncld 14435 txcnp 14591 fsumcncntop 14887 bj-nntrans 15681 |
| Copyright terms: Public domain | W3C validator |