Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspc | Unicode version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
rspc.1 | |
rspc.2 |
Ref | Expression |
---|---|
rspc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2458 | . 2 | |
2 | nfcv 2317 | . . . 4 | |
3 | nfv 1526 | . . . . 5 | |
4 | rspc.1 | . . . . 5 | |
5 | 3, 4 | nfim 1570 | . . . 4 |
6 | eleq1 2238 | . . . . 5 | |
7 | rspc.2 | . . . . 5 | |
8 | 6, 7 | imbi12d 234 | . . . 4 |
9 | 2, 5, 8 | spcgf 2817 | . . 3 |
10 | 9 | pm2.43a 51 | . 2 |
11 | 1, 10 | biimtrid 152 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wal 1351 wceq 1353 wnf 1458 wcel 2146 wral 2453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 |
This theorem is referenced by: rspcv 2835 rspc2 2850 rspc2vd 3123 pofun 4306 omsinds 4615 fmptcof 5675 fliftfuns 5789 qliftfuns 6609 xpf1o 6834 finexdc 6892 ssfirab 6923 iunfidisj 6935 dcfi 6970 cc3 7242 lble 8877 exfzdc 10210 uzsinds 10412 sumeq2 11335 sumfct 11350 sumrbdclem 11353 summodclem3 11356 summodclem2a 11357 zsumdc 11360 fsumgcl 11362 fsum3 11363 fsumf1o 11366 isumss 11367 isumss2 11369 fsum3cvg2 11370 fsumadd 11382 isummulc2 11402 fsum2dlemstep 11410 fisumcom2 11414 fsumshftm 11421 fisum0diag2 11423 fsummulc2 11424 fsum00 11438 fsumabs 11441 fsumrelem 11447 fsumiun 11453 isumshft 11466 mertenslem2 11512 prodeq2 11533 prodrbdclem 11547 prodmodclem3 11551 prodmodclem2a 11552 zproddc 11555 fprodseq 11559 prodfct 11563 fprodf1o 11564 prodssdc 11565 fprodmul 11567 fprodm1s 11577 fprodp1s 11578 fprodabs 11592 fprodap0 11597 fprod2dlemstep 11598 fprodcom2fi 11602 fprodrec 11605 fprodap0f 11612 fprodle 11616 zsupcllemstep 11913 infssuzex 11917 bezoutlemmain 11966 nnwosdc 12007 pcmpt 12308 ctiunctlemudc 12405 iuncld 13195 txcnp 13351 fsumcncntop 13636 bj-nntrans 14272 |
Copyright terms: Public domain | W3C validator |