Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspc | Unicode version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
rspc.1 | |
rspc.2 |
Ref | Expression |
---|---|
rspc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2437 | . 2 | |
2 | nfcv 2296 | . . . 4 | |
3 | nfv 1505 | . . . . 5 | |
4 | rspc.1 | . . . . 5 | |
5 | 3, 4 | nfim 1549 | . . . 4 |
6 | eleq1 2217 | . . . . 5 | |
7 | rspc.2 | . . . . 5 | |
8 | 6, 7 | imbi12d 233 | . . . 4 |
9 | 2, 5, 8 | spcgf 2791 | . . 3 |
10 | 9 | pm2.43a 51 | . 2 |
11 | 1, 10 | syl5bi 151 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1330 wceq 1332 wnf 1437 wcel 2125 wral 2432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-v 2711 |
This theorem is referenced by: rspcv 2809 rspc2 2824 pofun 4267 omsinds 4575 fmptcof 5627 fliftfuns 5739 qliftfuns 6553 xpf1o 6778 finexdc 6836 ssfirab 6867 iunfidisj 6879 cc3 7167 lble 8797 exfzdc 10117 uzsinds 10319 sumeq2 11233 sumfct 11248 sumrbdclem 11251 summodclem3 11254 summodclem2a 11255 zsumdc 11258 fsumgcl 11260 fsum3 11261 fsumf1o 11264 isumss 11265 isumss2 11267 fsum3cvg2 11268 fsumadd 11280 isummulc2 11300 fsum2dlemstep 11308 fisumcom2 11312 fsumshftm 11319 fisum0diag2 11321 fsummulc2 11322 fsum00 11336 fsumabs 11339 fsumrelem 11345 fsumiun 11351 isumshft 11364 mertenslem2 11410 prodeq2 11431 prodrbdclem 11445 prodmodclem3 11449 prodmodclem2a 11450 zproddc 11453 fprodseq 11457 prodfct 11461 fprodf1o 11462 prodssdc 11463 fprodmul 11465 fprodm1s 11475 fprodp1s 11476 fprodabs 11490 fprodap0 11495 fprod2dlemstep 11496 fprodcom2fi 11500 fprodrec 11503 fprodap0f 11510 fprodle 11514 zsupcllemstep 11805 infssuzex 11809 bezoutlemmain 11853 ctiunctlemudc 12117 iuncld 12454 txcnp 12610 fsumcncntop 12895 bj-nntrans 13464 |
Copyright terms: Public domain | W3C validator |