| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc | Unicode version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspc.1 |
|
| rspc.2 |
|
| Ref | Expression |
|---|---|
| rspc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2489 |
. 2
| |
| 2 | nfcv 2348 |
. . . 4
| |
| 3 | nfv 1551 |
. . . . 5
| |
| 4 | rspc.1 |
. . . . 5
| |
| 5 | 3, 4 | nfim 1595 |
. . . 4
|
| 6 | eleq1 2268 |
. . . . 5
| |
| 7 | rspc.2 |
. . . . 5
| |
| 8 | 6, 7 | imbi12d 234 |
. . . 4
|
| 9 | 2, 5, 8 | spcgf 2855 |
. . 3
|
| 10 | 9 | pm2.43a 51 |
. 2
|
| 11 | 1, 10 | biimtrid 152 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 |
| This theorem is referenced by: rspcv 2873 rspc2 2888 rspc2vd 3162 pofun 4359 omsinds 4670 fmptcof 5747 fliftfuns 5867 qliftfuns 6706 xpf1o 6941 finexdc 6999 ssfirab 7033 opabfi 7035 iunfidisj 7048 dcfi 7083 cc3 7380 lble 9020 exfzdc 10369 zsupcllemstep 10372 infssuzex 10376 uzsinds 10589 sumeq2 11670 sumfct 11685 sumrbdclem 11688 summodclem3 11691 summodclem2a 11692 zsumdc 11695 fsumgcl 11697 fsum3 11698 fsumf1o 11701 isumss 11702 isumss2 11704 fsum3cvg2 11705 fsumadd 11717 isummulc2 11737 fsum2dlemstep 11745 fisumcom2 11749 fsumshftm 11756 fisum0diag2 11758 fsummulc2 11759 fsum00 11773 fsumabs 11776 fsumrelem 11782 fsumiun 11788 isumshft 11801 mertenslem2 11847 prodeq2 11868 prodrbdclem 11882 prodmodclem3 11886 prodmodclem2a 11887 zproddc 11890 fprodseq 11894 prodfct 11898 fprodf1o 11899 prodssdc 11900 fprodmul 11902 fprodm1s 11912 fprodp1s 11913 fprodabs 11927 fprodap0 11932 fprod2dlemstep 11933 fprodcom2fi 11937 fprodrec 11940 fprodap0f 11947 fprodle 11951 bezoutlemmain 12319 nnwosdc 12360 pcmpt 12666 ctiunctlemudc 12808 gsumfzfsumlemm 14349 iuncld 14587 txcnp 14743 fsumcncntop 15039 bj-nntrans 15887 |
| Copyright terms: Public domain | W3C validator |