![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspc | Unicode version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
rspc.1 |
![]() ![]() ![]() ![]() |
rspc.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rspc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2477 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfcv 2336 |
. . . 4
![]() ![]() ![]() ![]() | |
3 | nfv 1539 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | rspc.1 |
. . . . 5
![]() ![]() ![]() ![]() | |
5 | 3, 4 | nfim 1583 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | eleq1 2256 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | rspc.2 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | imbi12d 234 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 2, 5, 8 | spcgf 2843 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 9 | pm2.43a 51 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 1, 10 | biimtrid 152 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 |
This theorem is referenced by: rspcv 2861 rspc2 2876 rspc2vd 3150 pofun 4344 omsinds 4655 fmptcof 5726 fliftfuns 5842 qliftfuns 6675 xpf1o 6902 finexdc 6960 ssfirab 6992 opabfi 6994 iunfidisj 7007 dcfi 7042 cc3 7330 lble 8968 exfzdc 10310 uzsinds 10518 sumeq2 11505 sumfct 11520 sumrbdclem 11523 summodclem3 11526 summodclem2a 11527 zsumdc 11530 fsumgcl 11532 fsum3 11533 fsumf1o 11536 isumss 11537 isumss2 11539 fsum3cvg2 11540 fsumadd 11552 isummulc2 11572 fsum2dlemstep 11580 fisumcom2 11584 fsumshftm 11591 fisum0diag2 11593 fsummulc2 11594 fsum00 11608 fsumabs 11611 fsumrelem 11617 fsumiun 11623 isumshft 11636 mertenslem2 11682 prodeq2 11703 prodrbdclem 11717 prodmodclem3 11721 prodmodclem2a 11722 zproddc 11725 fprodseq 11729 prodfct 11733 fprodf1o 11734 prodssdc 11735 fprodmul 11737 fprodm1s 11747 fprodp1s 11748 fprodabs 11762 fprodap0 11767 fprod2dlemstep 11768 fprodcom2fi 11772 fprodrec 11775 fprodap0f 11782 fprodle 11786 zsupcllemstep 12085 infssuzex 12089 bezoutlemmain 12138 nnwosdc 12179 pcmpt 12484 ctiunctlemudc 12597 gsumfzfsumlemm 14086 iuncld 14294 txcnp 14450 fsumcncntop 14746 bj-nntrans 15513 |
Copyright terms: Public domain | W3C validator |