![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspc | Unicode version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
rspc.1 |
![]() ![]() ![]() ![]() |
rspc.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rspc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2365 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfcv 2229 |
. . . 4
![]() ![]() ![]() ![]() | |
3 | nfv 1467 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | rspc.1 |
. . . . 5
![]() ![]() ![]() ![]() | |
5 | 3, 4 | nfim 1510 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | eleq1 2151 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | rspc.2 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | imbi12d 233 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 2, 5, 8 | spcgf 2702 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 9 | pm2.43a 51 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 1, 10 | syl5bi 151 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-v 2622 |
This theorem is referenced by: rspcv 2719 rspc2 2733 pofun 4148 omsinds 4448 fmptcof 5479 fliftfuns 5591 qliftfuns 6390 xpf1o 6614 finexdc 6672 ssfirab 6697 iunfidisj 6709 lble 8469 exfzdc 9712 uzsinds 9909 sumeq2 10809 sumfct 10824 isumrblem 10826 isummolem3 10831 isummolem2a 10832 zisum 10835 fsumgcl 10838 fisum 10839 fsumf1o 10843 isumss 10844 isumss2 10846 fisumcvg2 10847 fsum3cvg2 10848 fsumadd 10861 isummulc2 10881 fsum2dlemstep 10889 fisumcom2 10893 fsumshftm 10900 fisum0diag2 10902 fsummulc2 10903 fsum00 10917 fsumabs 10920 fsumrelem 10926 fsumiun 10932 isumshft 10945 mertenslem2 10991 zsupcllemstep 11280 infssuzex 11284 bezoutlemmain 11326 iuncld 11876 bj-nntrans 12119 |
Copyright terms: Public domain | W3C validator |