| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc | Unicode version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspc.1 |
|
| rspc.2 |
|
| Ref | Expression |
|---|---|
| rspc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2513 |
. 2
| |
| 2 | nfcv 2372 |
. . . 4
| |
| 3 | nfv 1574 |
. . . . 5
| |
| 4 | rspc.1 |
. . . . 5
| |
| 5 | 3, 4 | nfim 1618 |
. . . 4
|
| 6 | eleq1 2292 |
. . . . 5
| |
| 7 | rspc.2 |
. . . . 5
| |
| 8 | 6, 7 | imbi12d 234 |
. . . 4
|
| 9 | 2, 5, 8 | spcgf 2885 |
. . 3
|
| 10 | 9 | pm2.43a 51 |
. 2
|
| 11 | 1, 10 | biimtrid 152 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 |
| This theorem is referenced by: rspcv 2903 rspc2 2918 rspc2vd 3193 pofun 4402 omsinds 4713 fmptcof 5801 fliftfuns 5921 qliftfuns 6764 xpf1o 7001 finexdc 7060 ssfirab 7094 opabfi 7096 iunfidisj 7109 dcfi 7144 cc3 7450 lble 9090 exfzdc 10441 zsupcllemstep 10444 infssuzex 10448 uzsinds 10661 sumeq2 11865 sumfct 11880 sumrbdclem 11883 summodclem3 11886 summodclem2a 11887 zsumdc 11890 fsumgcl 11892 fsum3 11893 fsumf1o 11896 isumss 11897 isumss2 11899 fsum3cvg2 11900 fsumadd 11912 isummulc2 11932 fsum2dlemstep 11940 fisumcom2 11944 fsumshftm 11951 fisum0diag2 11953 fsummulc2 11954 fsum00 11968 fsumabs 11971 fsumrelem 11977 fsumiun 11983 isumshft 11996 mertenslem2 12042 prodeq2 12063 prodrbdclem 12077 prodmodclem3 12081 prodmodclem2a 12082 zproddc 12085 fprodseq 12089 prodfct 12093 fprodf1o 12094 prodssdc 12095 fprodmul 12097 fprodm1s 12107 fprodp1s 12108 fprodabs 12122 fprodap0 12127 fprod2dlemstep 12128 fprodcom2fi 12132 fprodrec 12135 fprodap0f 12142 fprodle 12146 bezoutlemmain 12514 nnwosdc 12555 pcmpt 12861 ctiunctlemudc 13003 gsumfzfsumlemm 14545 iuncld 14783 txcnp 14939 fsumcncntop 15235 bj-nntrans 16272 |
| Copyright terms: Public domain | W3C validator |