| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc | Unicode version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspc.1 |
|
| rspc.2 |
|
| Ref | Expression |
|---|---|
| rspc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2491 |
. 2
| |
| 2 | nfcv 2350 |
. . . 4
| |
| 3 | nfv 1552 |
. . . . 5
| |
| 4 | rspc.1 |
. . . . 5
| |
| 5 | 3, 4 | nfim 1596 |
. . . 4
|
| 6 | eleq1 2270 |
. . . . 5
| |
| 7 | rspc.2 |
. . . . 5
| |
| 8 | 6, 7 | imbi12d 234 |
. . . 4
|
| 9 | 2, 5, 8 | spcgf 2862 |
. . 3
|
| 10 | 9 | pm2.43a 51 |
. 2
|
| 11 | 1, 10 | biimtrid 152 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 |
| This theorem is referenced by: rspcv 2880 rspc2 2895 rspc2vd 3170 pofun 4377 omsinds 4688 fmptcof 5770 fliftfuns 5890 qliftfuns 6729 xpf1o 6966 finexdc 7025 ssfirab 7059 opabfi 7061 iunfidisj 7074 dcfi 7109 cc3 7415 lble 9055 exfzdc 10406 zsupcllemstep 10409 infssuzex 10413 uzsinds 10626 sumeq2 11785 sumfct 11800 sumrbdclem 11803 summodclem3 11806 summodclem2a 11807 zsumdc 11810 fsumgcl 11812 fsum3 11813 fsumf1o 11816 isumss 11817 isumss2 11819 fsum3cvg2 11820 fsumadd 11832 isummulc2 11852 fsum2dlemstep 11860 fisumcom2 11864 fsumshftm 11871 fisum0diag2 11873 fsummulc2 11874 fsum00 11888 fsumabs 11891 fsumrelem 11897 fsumiun 11903 isumshft 11916 mertenslem2 11962 prodeq2 11983 prodrbdclem 11997 prodmodclem3 12001 prodmodclem2a 12002 zproddc 12005 fprodseq 12009 prodfct 12013 fprodf1o 12014 prodssdc 12015 fprodmul 12017 fprodm1s 12027 fprodp1s 12028 fprodabs 12042 fprodap0 12047 fprod2dlemstep 12048 fprodcom2fi 12052 fprodrec 12055 fprodap0f 12062 fprodle 12066 bezoutlemmain 12434 nnwosdc 12475 pcmpt 12781 ctiunctlemudc 12923 gsumfzfsumlemm 14464 iuncld 14702 txcnp 14858 fsumcncntop 15154 bj-nntrans 16086 |
| Copyright terms: Public domain | W3C validator |